
Module 3: Fourier Series and Fourier Transform

Lesson 23

Half Range Sine and Cosine Series

In this chapter, we start discussion on even and odd function. As mentioned earlier if the

function is odd or even then the Fourier series takes a rathersimple form of containing

sine or cosine terms only. Then we discuss a very important topic of developing a desired

Fourier series (sine or cosine) of a function defined on a finite interval by extending the

given function as odd or even function.

23.1 Even and Odd Functions

A function is said to be an even about the pointa if f(a− x) = f(a + x) for all x and odd

about the pointa if f(a− x) = −f(a + x) for all x. Further, note the following properties

of even and odd functions:

a) The product of two even or two odd functions is again an evenfunction.

b) The product of and even function and an odd function is an odd function.

Using these properties we have the following results for theFourier coefficients

an =
1

π

∫ π

−π

f(x) cos(nx) dx =
2

π







∫ π

0

f(x) cos(nx) dx, whenf is even function about0

0, whenf is odd function about0

bn =
1

π

∫ π

−π

f(x) sin(nx) dx =
2

π







0, whenf is even function about0
∫ π

0

f(x) sin(nx) dx, whenf is odd function about0

From these observation we have the following results

23.1.1 Proposition

Assume thatf is a piecewise continuous function on[−π, π]. Then
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a) If f is an even function then the Fourier series takes the simple form

f(x) ∼
a0

2
+

∞
∑

n=1

an cos(nx) with an =
2

π

∫ π

0

f(x) cos(nx) dx, n = 0, 1, 2, . . . .

Such a series is called a cosine series.

b) If f is an odd function then the Fourier series off has the form

f(x) ∼

∞
∑

n=1

bn sin(nx) with bn =
2

π

∫ π

0

f(x) sin(nx) dx, n = 1, 2, . . . .

Such a series is called a sine series.

23.2 Example Problems

23.2.1 Problem 1

Obtain the Fourier series to represent the functionf(x)

f(x) =

{

x, when0 ≤ x ≤ π

2π − x, whenπ < x ≤ 2π

Solution: The given function is an even function aboutx = π and therefore

bn =
1

π

∫ 2π

0

f(x) sin(nx) dx = 0.

The coefficienta0 will be calculated as

a0 =
1

π

∫ 2π

0

f(x) dx =
1

π

[
∫ π

0

x dx+

∫ 2π

pi

(2π − x) dx

]

=
1

π

[

π2

2
+

π2

2

]

= π

The other coefficientsan are given as

an =
1

π

∫ 2π

0

f(x) cos(nx) dx =
1

π

[
∫

π

0

x cos(nx) dx+

∫ 2π

pi

(2π − x) cos(nx) dx

]
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It can be further simplified as

an =
2

n2π
[(−1)n − 1] =

{

0, whenn is even
4

n2π
, whenn is odd

Therefore, the Fourier series is given by

f(x) =
π

2
−

4

π

[

cosx+
cos 3x

32
+

cos 5x

52
+ . . .

]

where0 ≤ x ≤ 2π. (23.1)

In this case as the function is continuous andf ′ is piecewise continuous, the series con-

verges uniformly tof(x) and we can write the equality (23.1).

23.2.2 Problem 2

Determine the Fourier Series off(x) = x2 on [-π, π] and hence find the value of the

infinite series
∞
∑

n=1

(−1)n+1 1

n2
and

∞
∑

n=1

1

n2
.

Solution: The functionf(x) = x2 is even on the interval [-π, π] and thereforebn=0 for all

n. The coefficienta0 is given as

a0 =
1

π

∫ π

π

x2 dx =
x3

3π

∣

∣

∣

π

−π
=

2π2

3
.

The other coefficients can be calculated by the general formula as

an =
1

π

∫ π

−π

x2 cos(nx) dx =
2

π

∫ π

0

x2 cos(nx) dx =
2

π

[

x2
sin(nx)

n

∣

∣

∣

π

0
−

1

n

∫ π

0

2x sin(nx) dx

]

Again integrating by parts we obtain

an =
4

nπ

[

x
cos(nx)

n

∣

∣

∣

π

0
−

∫ π

0

cos(nx)

n
dx

]

=
4

nπ

[

π(−1)n

n
− 0

]

=
4(−1)n

n2

Therefore the Fourier series is given as

x2 =
π2

3
+

∞
∑

n=1

4(−1)n

n2
cos(nx) for x ∈ [−π, π]. (23.2)

If we substitutex = 0 in the equation (23.2) we get

0 =
π2

3
+

∞
∑

n=1

4(−1)n

n2
⇒

∞
∑

n=1

(−1)n+1

n2
=

π2

12
.

If we now substitutex = π in the equation (23.2) we get

π2 =
π2

3
+

∞
∑

n=1

4(−1)2n

n2
⇒

1

4

2π2

3
=

∞
∑

n=1

1

n2
⇒

∞
∑

n=1

1

n2
=

π2

6
.
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23.3 Half Range Series

Suppose thatf(x) is a function defined on(0, l]. Suppose we want to expressf(x) in the

cosine or sine series. This can be done by extendingf(x) to be an even or an odd function

on [−l, l]. Note that there exists an infinite number of ways to express the function in the

interval[−l, 0]. Among all possible extension off there are two, even and odd extensions,

that lead to simple and useful series:

a) If we want to expressf(x) in cosine series then we extendf(x) as an even function in

the interval[−l, l].

b) On the other hand, if we want to expressf(x) in sine series then we extendf(x) as an

odd function in[−l, l].

We summarize the above discussion in the following proposition

23.3.1 Proposition

Letf be a piecewise continuous function defined on[0, l]. The series

f(x) ∼
a0

2
+

∞
∑

n=1

an cos
nπx

l
with an =

2

l

∫ l

0

f(x) cos
nπx

l
dx

is called half range cosine series off . Similarly, the series

f(x) ∼

∞
∑

n=1

bn sin
nπx

l
with bn =

2

l

∫ l

0

f(x) sin
nπx

l
dx

is called half range sine series off .

Remark: Note that we can develop a Fourier series of a functionf defined in[0, l]

and it will, in general, contain all sine and cosine terms. This series, if converges, will

represent al-periodic function. The idea of half range Fourier series isentirely different

where we extend the functionf as per our desire to have sine or cosine series. The half

range series of the functionf will represent a2l-periodic function.
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23.4 Example Problems

23.4.1 Problem 1

Obtain the half range sine series forex in 0 < x < 1.

Solution: Since we are developing sine series off we need to computebn as

bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx = 2

∫ 1

0

ex sin nπx = 2

[

ex sin nπx|10 − nπ

∫ 1

0

ex cos nπxdx

]

dx

=2

[

−nπ{ex cosnπx|10 + nπ

∫ 1

0

ex sin nπx dx}

]

= −2nπ(e(−1)n − 1)− n2π2bn

Taking second term on the right side to the left side and aftersimplification we get

bn =
2nπ [1− e(−1)n]

1 + n2π2

Therefore, the sine series off is given as

ex = 2π

∞
∑

n=1

n [1− e(−1)n]

1 + n2π2
sinnπx for 0 < x < 1

23.4.2 Problem 2

Let f(x) = sin πx
l

on (0, l). Find Fourier cosine series in the range0 < x < l.

Solution: Sine we want to find cosine series of the functionf we compute the coefficients

an as

an =
2

l

∫ l

0

sin
πx

l
cos

nπx

l
dx =

1

l

∫ l

0

[

sin
(n+ 1)πx

l
+ sin

(1− n)πx

l

]

dx

Forn 6= 1 we can can compute the integrals to get

an =
1

l

[

−
cos

(n+1)πx
l

(n+1)π
l

+
cos

(1−n)πx
l

(n−1)π
l

]l

0

=
1

π

[

−
(−1)n+1

n+ 1
+

1

n+ 1
+

(−1)n−1

n− 1
−

1

n− 1

]

It can be further simplified as

an =

{

0, whenn is odd

− 4
π(n+1)(n−1)

, whenn is even
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The coefficienta1 needs to calculated separately as

a1 =
1

l

∫ l

0

sin
2πx

l
dx =

1

l

[

cos
2πx

l

l

2π

]l

0

=
1

2π
(1− 1) = 0

The Fourier cosine series off is given as

sin
πx

l
=

2

π
−

4

π

[

cos 2πx
l

1 · 3
+

cos 4πx
l

3 · 5
+

cos 6πx
l

5 · 7
+ . . .

]

23.4.3 Problem 3

Expandf(x) = x, 0 < x < 2 in a (i) sine series and (ii) cosine series.

Solution: (i) To get sine series we calculatebn as

bn =
2

l

∫ l

0

f(x) sin
nπx

L
dx =

2

2

∫ 2

0

x sin
nπx

2
dx

Integrating by parts we obtain

bn =
[

x cos
nπx

2

(

−
2

nπ

)]2

0
+

2

nπ

∫ 2

0

cos
nπx

2
dx = −

4

nπ
cosnπ.

Then for0 < x < 2 we have the Fourier sine series

x = −
4

π

∑∞

n=1

cosnπ

n
sin

nπx

2
=

4

π

(

sin
πx

2
−

1

2
sin

2πx

2
+

1

3
sin

3πx

2
+ . . .

)

.

(ii) Now we expressf(x) = x in cosine series. We need to calculatean for n 6= 0 as

an =
2

2

∫ 2

0

x cos
nπx

2
dx =

[

x sin
nπx

2

(

2

nπ

)]2

0
−

∫ 2

0

sin
nπx

2

(

2

nπ

)

dx

After simplifications we obtain

an =
2

nπ

(

2

nπ

)[

cos
nπx

2

]2

0
=

4

n2π2
(cos nπ − 1) =

4

n2π2
[(−1)n − 1]

The coefficienta0 is given as

a0 =

∫ 2

0

x dx = 2

Then the Fourier sine series off(x) = x for 0 < x < 2 is given as

x = 1 +
4

π2

∞
∑

n=1

[(−1)n − 1]

n2
cos

nπx

2
= 1−

8

π2

(

cos
πx

2
+

1

32
cos

3πx

2
+

1

52
cos

5πx

2
+ . . .

)

.
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It is interesting to note that the given functionf(x) = x, 0 < x < 2 is represented by

two entirely different series. One contains only sine termswhile the other contains only

cosine terms.

Note that we have used series equal to the given function because the series converges for

eachx ∈ (0, 2) to the function value. It should also be pointed out that one can deduce

sum of several series by putting different values ofx ∈ (0, 2) in the above sine and cosine

series.

Suggested Readings

Davis, H.F. (1963). Fourier Series and Orthogonal Functions. Dover Publications, Inc.

New York.

Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications. Second

Edition. Chapman and Hall/CRC (Taylor and Francis Group). New York.

Folland, G.B. (1992). Fourier Analysis and Its Applications. Indian Edition. American

Mathematical Society. Providence, Rhode Islands.

Jeffrey, A. (2002). Advanced Engineering Mathematics. Elsevier Academic Press. New

Delhi.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and Integral Transforms. Cambridge

University Press. United Kingdom.

Peter, V. O’Neil (2008). Advanced Engineering Mathematics. Cengage Learning (Indian

edition)

Kreyszig, E. (1993). Advanced Engineering Mathematics. Seventh Edition, John Willey

& Sons, Inc., New York.

7


