Module 3: Fourier Series and Fourier Transform

L esson 23

Half Range Sineand Cosine Series

In this chapter, we start discussion on even and odd funcBisrmentioned earlier if the
function is odd or even then the Fourier series takes a raih®le form of containing
sine or cosine terms only. Then we discuss a very importgmnt tif developing a desired
Fourier series (sine or cosine) of a function defined on aefiiniterval by extending the
given function as odd or even function.

23.1 Even and Odd Functions

A function is said to be an even about the pairit f(a — z) = f(a + x) for all z and odd
about the point if f(a —z) = —f(a + z) for all z. Further, note the following properties
of even and odd functions:

a) The product of two even or two odd functions is again an éweation.
b) The product of and even function and an odd function is ahfodction.

Using these properties we have the following results foRiwerier coefficients

/ i / f(z)cos(nx)dz, whenf is even function about
COS nx

0, whenf is odd function about

whenf is even function about
/ f(@)sin(na) / f(z)sin(nz)dz, whenf is odd function about

From these observation we have the following results

23.1.1 Proposition

Assume that is a piecewise continuous function par, 7). Then
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a) If f is an even function then the Fourier series takes the sinopie f

@ o : 27 B
f(z) ~ ) + Zan cos(nx) with an = — /0 f(z)cos(nz)dz,n=0,1,2,....

n=1

Such a series is called a cosine series.

b) If fis an odd function then the Fourier seriesfohas the form
@)~ basinte)  with b, = % / @) sin(nz) dz,n = 1,2,
n=1 0

Such a series is called a sine series.

23.2 Example Problems

23.2.1 Problem 1

Obtain the Fourier series to represent the functitn)

f(x){x’ wheno <z <r

2 —x, whenr <z <27

Solution: The given function is an even function abaut = and therefore

27
by = — (x) sin(nz) dz = 0.

T Jo

The coefficienty will be calculated as

1 27 1 T 2 1
ap = — f(x)dx:—{/ xdx+/ (27T—l')dl’1=—
T Jo 7| /o vi i

The other coefficients, are given as

2m T 27
ap = l/ f(z) cos(nz) dx = [/ zcos(nx) dr + / (2w — z) cos(nx) dx]
0 0 pi

3|

T
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It can be further simplified as
2 0, whenniseven
——, whenn is odd

Therefore, the Fourier series is given by

f() T 4 cos +COS3{L'+COS51'
r)=——— T
2 0w 32 52

+ ] where0 < z < 27. (23.1)

In this case as the function is continuous ghds piecewise continuous, the series con-
verges uniformly tof (z) and we can write the equality (23.1).

23.2.2 Problem 2

Determine the Fourier Series gfiz) = 22 on [-r, 7] and hence find the value of the

o . 1 1
n+1
infinite serleszl(—l) — and Zl 5
Solution: The functionf(x) = 22 is even on the interval {; 7] and therefore,, =0 for all
n. The coefficient, is given as

o

(", 3
—_— dr = =— .
T /ﬁ T el T 8
The other coefficients can be calculated by the general flaram
1 ™ 2 T 2 . T 1 T
ap = —/ 2% cos(nz) do = —/ 2% cos(nz) dx = = [xQM — —/ 2z sin(nx) dx}
0 0 nJo
Again integrating by parts we obtain

4 lxcos(nx) 7T_/7T cos(nx) dx} _ 4 lﬂ(—l)" _01 _ 4(—1)"
0

nm 0 n nm n n

—T

n

Therefore the Fourier series is given as

2 o0 _1\n
=14 Z 4(n21) cos(nx) for =z e |[-m 7. (23.2)
n=1

If we substituter = 0 in the equation (23.2) we get

2 o© n o0 n+1 2
m 4(-1) (-t o
0= 3 +Z1 n2 ; Z n2 127
n=

n=1

If we now substituter = = in the equation (23.2) we get

9 T 4(-1) 127 1 I
el e Tl lwtlu e
n— n= n=
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23.3 Half Range Series

Suppose thaf(z) is a function defined o, /]. Suppose we want to express) in the
cosine or sine series. This can be done by extenglingto be an even or an odd function

n|[—1,]. Note that there exists an infinite number of ways to express$unction in the
interval[—7,0]. Among all possible extension ¢fthere are two, even and odd extensions,
that lead to simple and useful series:

a) If we want to expresg(z) in cosine series then we exterigr) as an even function in
the interval[—i, [].

b) On the other hand, if we want to expre&s) in sine series then we exteridr) as an
odd function in[—(, [].

We summarize the above discussion in the following propmosit

23.3.1 Proposition

Let f be a piecewise continuous function definedof. The series

S Z an cos 2L with an / f(x)cos w dz

is called half range cosine series pof Similarly, the series

(o.9]
x) ~ Z by, sin # with by, / f(zx)sin m dx
n=1

is called half range sine series ¢f

Remark: Note that we can develop a Fourier series of a functjodefined in[0, ]

and it will, in general, contain all sine and cosine terms.isTseries, if converges, will
represent d-periodic function. The idea of half range Fourier serieeigirely different
where we extend the functighas per our desire to have sine or cosine series. The half
range series of the functiofnwill represent ai-periodic function.
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23.4 Example Problems

23.4.1 Problem 1

Obtain the half range sine seriesfetrin 0 < z < 1.

Solution: Since we are developing sine seriesafe need to computg, as

l 1 1
2
bn, =7 f(x)sin #dx = 2/ e’ sinnrr = 2 [ew sin mrx‘(l) - "7/ e’ cosnmx d$] dz
0 0 0

1
=2 {—mr{ew cos mrx|(1) + mr/ e’ sinnmwx dx}} = 2n7(e(—1)" — 1) — n’r?b,
0

Taking second term on the right side to the left side and afteplification we get

~ 2nm[1 —e(—1)"]
" 1+ n2n?

Therefore, the sine series pis given as

1—6
e’ —27?2 1+n22 smmm for 0<z<1

23.4.2 Problem 2

Let f(x) = sin &% on (0,1). Find Fourier cosine series in the range< = < I.

Solution: Sine we want to find cosine series of the functfowe compute the coefficients
an AS

l l
2 1 1 1-—
an:_/smﬂcosﬂdx:_/ {Smwﬂin%] "
0 0

Forn # 1 we can can compute the integrals to get

T

l

I e et RN ) oS W o D B

= (7H'l1)7r (”—ll)W n+1 n+1 n—1 n—1
0

It can be further simplified as

{ 0, whenn is odd
Ay =
(

4 -
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The coefficient; needs to calculated separately as

l l
1 2 1 2 l 1
alzj/osin$dx—7lcos$%1 (1—1) 0

The Fourier cosine series ¢fis given as

2rx drx 6rx

T 2 4[0087 cos L cos L ]
+ ...

M= sl T3 T3 T 57

23.4.3 Problem 3

Expandf(z) =z, 0 < x < 2ina (i) sine series and (ii) cosine series.

Solution: (i) To get sine series we calculaigas

2
2
/f smwdx_Q/ rsin "7 4z
0

Integrating by parts we obtain

nwx 2 2 2 2 nwx 4
b, = [xcos— (——)} + — cos — dz = ——— cosnm.
2 nw/lo nm J, 2 nmw

Then for0 < z < 2 we have the Fourier sine series

00 cosmr . mrx 4 v wmx 1 . 2rx 1 . 3mx
:——Z 7 :;(sm———sm——l——sm—+...>.

(i) Now we express(z) = z in cosine series. We need to calculatgfor n # 0 as

2 2 nmwT . onmx [ 2 2 2 . onmx [ 2
ap = = rcos —dx = [xsm— (—)} — sin —— (—) dz
2 0 2 2 nw/lo 0 2 nmw

After simplifications we obtain

an = = (3) {Cos "ﬂ} T 47T (cosnm — 1) = o [(—=1)" — 1]

nmw \nmw 2 Jo

2
aoz/ rdr =2
0

Then the Fourier sine series pfx) = = for 0 < z < 2 is given as

4 > nmwT 8 T 1 3rx 1 Stx
= —g 0S = ——(cos—+—cos—+—cos—+...).
7T —_

The coefficient is given as

2 32 2 52 2
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It is interesting to note that the given functigiz) = =, 0 < z < 2 Is represented by
two entirely different series. One contains only sine tewhde the other contains only
cosine terms.

Note that we have used series equal to the given functiorulsedhe series converges for
eachz € (0,2) to the function value. It should also be pointed out that cere @educe
sum of several series by putting different values ef (0, 2) in the above sine and cosine
series.
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