Module 3: Ordinary Differential Equations

Lesson 37

Series Solutions about an Ordinary Point

37.1 Introduction

If we can’t find a solution to a differential equations in arfoof nice functions, we can
still look for a series representation of the solution. &esolutions are very useful be-
cause if we know that the series converges, we can approxitmasolution as closely as
we want. In this lesson we describe series solutions ofisglsecond order linear homo-
geneous differential equations with variables coeffigeieries solution can be used in
conjunction with variation of parameters to solve lineanim@mogeneous equations. For
simplicity, we shall be dealing mainly with polynomial cGefents. Here we consider the
second order homogeneous equation of the form

P(x)y" +Q(x)y' + R(z)y =0 (37.1)

where P, and R are polynomials or analytic functions in general. Many peats in
mathematical physics leads to equations of the form (37a¥)nly polynomial coeffi-
cients; for example, the Bessel equation

ny// + xy/ + (x2a2)y — 0,
whereq is a constant, and the Legendre equation

(1 —2)%y" =22y +c(c+ 1)y =0

where c is a constant.

37.2 Useful Definitions

Here we provide some definitions which will be very usefulfiading series solution of
the differential equations.
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37.2.1 Analytic Function

A function f(x) defined on an interval containing the point x is called analytic at
if its Taylor series,

0 £(n)(p
S L)y (37.2)

n!
n=0

exists and converges §gx) for all z in the interval of convergence of (37.2).

37.2.2 Ordinary Points

A point z = =z is called an ordinary point of the Equation (37.1)Af @, and R are
polynomials that do not have any common factors, then a pgirg called an ordinary
point if P(x) # 0. A pointx; whereP(x;) = 0 is called a singular point. If any a?, Q,
or R is not a polynomial, then we call) an ordinary point ifQ(z)/P(x) and R(x)/P(z)
are analytic about.

It is often useful to rewrite Equation (37.1) as

y" +p(x)y +q(x)y =0 (37.3)

wherep(z) = Q(x)/P(x) andq(x) = R(z)/P(x). The Equation (37.3) is called equivalent
normalized form of the Equation (37.1).

37.2.3 Singular Points

If the pointz = z is not an ordinary point of the differential Equation (37at)(37.3),
then it is called a singular point of the differential eqoatof (37.3). There are two types
of singular points{i) regular singular points, ang) irregular singular points. A singular
point x = z( of the differential Equation (37.3) is called a regular silag point of the
differential Equation (37.3) if both

(z — z0)p(z) and(z — z0)3q(z)

are analytic at = z. A singular point, which is not regular is called an irregudargular
point.
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37.3 Example Problems

37.3.1 Problem 1

Show that z = 0 isan ordinary point of (z> — 1)y” +ay' —y = 0, but » = 1 isa regular
singular point.

Solution: Writing the given equation in normalized form

d%y x dy 1

G-Da+ld @D’ (37.4)

Comparing (37.4) with the standard equatidn+ p(z)y’ + q(z)y = 0, we have
px) =z/(z —1)(x+1)andq(z) = -1/(z — 1)(z + 1).

Since bothp(x) andq(z) are analytic at: = 0, the pointz = 0 is an ordinary point of the
given Equation (37.4). Further note that bgth) andq(z) are not analytic at = 1, thus
x = 1is not an ordinary point and so= 1 is a singular point. Also

(z—1)P(z)=z/(z+1)and(z — 1)?Q(z) = —(z — 1) /(z + 1)
show that bothz — 1)P(z) and (z — 1)2Q(x) are analytic at = 1. Thereforer = 1 is a

regular singular point.

37.3.2 Problem 2

Determine whether the point 2 = 0 isan ordinary point or regular point of the differential
eguation
zy” +sin(z)y + 2%y =0

Solution: Comparing with the normalized equation we get

p(r) = % andy(r) =«

Sincep(z) andq(z) both are analytic at = 0, the pointz = 0 is an ordinary point. This
example shows that singular point does not always occureni@r) = 0.
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37.3.3 Problem 3

Discuss the singular points of the differential equation

?(x — 2)%y" + (x — 2)y' + 3%y = 0.

Solution: Clearly the function

1
T

is not analytic at- = 0 andx = 2. Also the function

3
q(r) = 77—
D= =)
IS not analytic at- = 2. Hence both: = 0 andz = 2 are singular point of the differential
equations. At: = 0 we have

32

and 22¢(x) = CEDE

1
) = G —2)

Note thatz?¢(z) is non-singular at = 0 but zp(z) is not analytic at this point. Hence
x = 0is an irregular singular point. At = 2 we have

(¢~ 2)p(r) = and (v~ 2)Pg(s) =2

Both functions are analytic at= 2 and hence = 2 is a regular singular point.

37.4 Brief Overview of Power Series

A power series about a poing is a series of the form

[ee]
Z cn(T — x0)"
n=>0

wherez is a variable and,, are constants, called coefficients of the series. There are
three possibilities about the convergence of a power seftes series may converge only
atz = 0 or it may converge for all values af. If this is not the case then a definite
positive number exists such that the given series converges for emeryzy| < R and



Series Solutions about an Ordinary Point

diverges for everyr — 4| > R. Such a number is known as the radius of convergence and
lzo — R, o + R|, the interval of convergence, of the given series.

Among several formulas for determining convergence of thgr series, ratio test is
most common and simple to use. Given a power Serigs, ¢, (z — )" we compute

1 )
— = lim
n—oo

Cn+1
Cn

Y

then the series is convergence for x| < R and divergeniz — zo| > R.

37.4.1 Example

Determine the radius of convergence of the power series

. (z+1)"
S

n=1

Solution: Ratio test gives
n2" 1
(n+1)2n+1| 2
Hence the radius of convergence of the power seri@&s=s2 and the interval of conver-
gence is-3 < x < 1. The convergence at the end points- —3 andz = 1 needs to be

checked separately.

lim =
n—oo

37.5 Power Series Solution near Ordinary Point

Let the given equation be

y" +p(x)y +q(x)y =0 (37.5)

If z = z¢ is an ordinary point of (37.5), then (37.5) has two non-aiNinearly indepen-
dent power series solutions of the form

oo

> Cula — xo)" (37.6)

n=0

and these power series converge in some interval of conveege— x¢| < R, (WwhereRr
is the radius of convergence of (37.6)) about
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To find series solutions we suppose that we have a seriesespation,

o0

y=>Y Cnlx—x)" (37.7)

n=0
and then to find out coefficient$, we need to differentiate (37.7) and plug in the deriva-
tives into the Equation (37.6). Once we have the appropcegdficients, we call (37.7)
the series solution to (37.5) near z,. More precisely, differentiating twice, the Equa-
tion (37.7) yields

o0

Y =) nCu(z—10)"" and y" = n(n—1)Cp(x — x9)" > (37.8)
n=0 n=0

Substituting the above values@fy’ andy” in (37.5), we obtain
Ag+ Ar(x — x0) + As(z — 20)* + ... + Ap(z — 20)" + ... = 0, (37.9)

where the coefficientd,, A1, A . .. etc. are now some functions of the coefficietgsCy, Cs, . ..
etc. Since the Equation (37.9) is an identity, all the codfits Ay, A1, A, ... of (37.9)
must be zero, i.e.,

Ag=0,41=0,A5=0,..., A, =0 (37.10)

Solving Equation (37.10), we obtain the coefficients of {34n terms ofCy, and C;.
Substituting these coefficients in (37.7), we obtain thaiiregl series solution of (37.5)
in power of(x — xp).
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