Module-IV: Vector Calculus

Lesson 42
Gradient and Directional Derivative

42.1 Gradient of a Scalar Field

Let f(x,y,z) be a real valued function defining a scalar field. To define the gradient of a scalar
field, we first introduce a vector operator called del operator denoted by V. We define the vector
differential operator in two and three dimensions as

R P R R
V—la+}5 and V—Lax+]ay+kaz
The gradient of a scalar field f(x, y, z), denoted by Vf or grad (f) is defined as

o

_ o
Vf_lax+]6y+kaz

Note that the del operator V operates on a scalar field and produces a vector field.

42.1. 1 Example

Find the gradient of the following scalar fields

() f(x,y) = y* —4xy at(1,2),

Solution
, 0 ) 2 . .
Vi(x,y) = (l PR E) (r® —4xy) = —4y i + 2y — 4x)j
42.1. 2 Example
r =xi +yj + zk,|r| = r and # = r/r, then show that grad(%) = —#/r2.

Solution

) - (7 +2) ()= (-25) 5 (-5 5) + (- 5) = - o

o)

where 7 = (xi + yj + zk)/r
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42.1. 3 Geometrical Representation of the Gradient

Let f(P) = f(x,y,z) be a differentiable scalar field. Let f(x,y,z) = k be a level surface and
Py (x0, Vo, 29) be a point on it. There are infinite number of smooth curves on the surface passing
through the point P,. Each of these curves has a tangent at P,. The totality of these tangent lines
form a tangent plane to the surface at a point P,. A vector normal to this plane at P, is called the
normal vector to the surface at this point.

Consider now a smooth curve C on the surface passing through a point P on the surface. Let
x =x(t),y = y(t), z = z(t) be the parametric representation of the curve C. Any point P on C
has the position vector r(t) = x(t)i + y(t)j + z(t)k. Since the curve lies on the surface, we
have

flx(@),y(),z(t) =k

Then f(x(t) y(t),z(t)) =0

) of dx | of dy | of dz _
By chain rule, we have -2+ 252k + 2220 = 0

or (B ) (5 4+ k8) =0
orVE.r'(t) =0

Let V£(P) # 0 and r'(t) # 0. Now r'(t) is a tangent to C at the point P and lies in the tangent
plane to the surface at . Hence Vf(P) is orthogonal to every tangent vector at P. Therefore,
Vf(P) isthe vector normal to the surface f(x,y,z) =k at the point P.

42.1. 4 Example
We will find a unit normal vector to the surface xy? + 2yz = 8 at the point (3, —2,1).
Let f(x,y,2z) = xy? + 2yz = 8 then

af—y, —2xy+22and 2y

Therefore
Vf—l +]a +k -=y 2i + (2xy + 22)j + 2yk

At (3,—2,1), we obtain the normal vector as Vf(3,—2,1) = 4i — 10j — 4k. The unit normal
vector at (3,—2,1) is given by

4i-10j—4k _ 2i-5j—2k
V16+100+16 33
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42.1. 5 Example

Here we will find the angle between the two surfaces xlog z = y?> — 1 and x?y = 2 — z at the
given point (1,1,1).

First note that the angle between two surfaces at a common point is the angle between their
normals at that point. Now we have

filx,y,2) = xlogz—y*+1=0,Af(x,y,2z) = (logz)i — 2yj + (x/2)k
Af(1L11) =-2j+k=mn
f0Gy,2) =x*y—2+2z=0, Afy(x,y,2) = 2xyi + x%j + k
AL(LLD) =2i+j+k=mn,

1
V30

ni.ny _

Therefore cos8 =
[nqllnzl

or = cos™! (%)

42.1.6 Properties of Gradient

Let f and g be any two differentiable scalar fields. The gradient satidfies the following algebraic
properties,

A(f+9) =Af +Ag
Alcif + cp9) = c1Af + c;Ag, where ¢y, ¢, are arbitrary constants
A(fg) = fAg + gAf

A (5 ) _ gAfg—Zf Ag

42.2 Directional Derivative

Let f(P) = f(x,y, z) be a differentiable scalar field.

Then % %% denotes the rates of change of f in the direction of x, y and z axis, respectively.
9f of of
ox’ ay ’ oz
the slopes of the tangent lines in the directions of i,j, k respectively. It is natural to give the
definition of derivative in any direction which we call as the directional derivative.

If f(x,vy,z) =k isthe level surface and P, is any point, then at Py(xg, ¥o, Z9) denote

Let b = byi + b,j + b3k be any unit vector. Let P, be any point Py: a = ayi + a,j + ask.

Then, the position vector of any point Q on the line passing through P, and in the direction of b
IS given by
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r=a+th=(a; +th)i+ (ay + thy)j + (az + th3)k = x(t)i + y(t)j + z(t)k

This is, the point Q(a; + tby,a, + tby, az + th3) is on this line. Now, the vector formthe point
P, to Q is given by tb. Since | b|=1, the distance from P, to Q is t. Then

of _ 1. f@-f®)
6_1_‘ - 11rnt—)O ¢

if it exists, is called the directional derivative of f at the point P, in the direction to b .
Therefore aa_t fx(t),y(t),z(t)) is rate of change of f with respect to the distance t.

We have

of _ of dx | df dy |, of dz
at  odx dt = dy dt = 0z dt

where

dx dy dz

o 7 are evaluatedatt = 0 .

We write

O _ (196 4% 4 O (1 4 24 1 82) = g dr
at_(lax+]ay+kaz)'(ldt+]dt+kdt)_vf'dt

But Z—: = b(a unit vector). Therefore, the directional derivative of f in the direction of b in given
by
Directional derivative =Vf. b = grad(f). b,

which is denoted by D, (f). Note that b is a unit vector. If the direction is specified by a vector
u, then b = u/|u|.

42.2.1 Example

We will determine the directional derivative of f(x,y,z) = xy? + 4xyz + z> at the point
(1,2,3) in the direction of 3i + 4j — 5k.

Consider
Vf = (y? + 4yz)i + 2xy + 4xz)j + (4xy + 22)k.

At the point (1,2,3), we have Vf = 28i + 16j + 14k. The unit vector in the given direction is
b = (3i + 4j — 5k)/5V2.

Therefore
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D,(1,2,3) = Sl—ﬁ(z&' + 16j + 14k). (3i + 4j — 5k) = %
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