Module-IV: Vector Calculus

Lesson 44
Line Integral

44.1 Introduction
Let C be a simple curve. Let the parametric representation of C be written as

x=xt),y=y(t),z=2(t), a<t<b (44.1.1)
Therefore, the position vector of appoint on the curve C can be written as

r@®)=x@®)i+y@t)j+z@)k,a<t<b (44.1.2)

44.2 Line Integral with Respect to Arc Length

Let C be a simple smooth curve whose parametric representation is given as Egs.(1) and (2).
Let f(x,y,z) be continuous on C. Then, we define the line integral f of over C with respect
to the arc length s by

[, fOoy,2)ds = [ fx(®),y(0), 2N O +y (©)F + 2 (©)7 dt

since

o= 0= [+ (&) + (&)

44.2.1 Example

Evaluate fC (x% + yz)ds, where C is the curve defined by x = 4y,z = 3 form (2,%, 3) to
(4,1,3).

Solution

Let x =t. Then, y = t/4 and z = 3. Therefore, the curve C represented by

x=ty=-,z=3,2<t<3.

t
Zr

We have ds = /17 /4.

2 _ V17 (4(,2 3 _ 13917
Hence [, (x? +yz)ds = [ (t2 +3t)dt = =

44.2.2 Line Integral of Vector Fields

Let C be a smooth curve whose parametric representation is given in Egs. (44.1.1) and
(44.1.2). Let
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v(x,v,z) =v1(x,y,2)i + v,(x,y,2)j + v3(x,y,2)k

be a vector field that is continuous on C. Then, the line integral of v over C is defined by
Jo v.dr = [, vidx +v,dy + v3dz
d
= J. v(x(®),y(®),z(®)) .é dt (44.2.1)
If v=v;(x,v,2)i, then Eq.( 44.2.1) reduces to

Jo vidr=[. vidx = [, vy (x(®),y(t), 2(t)) Z—:dt

Similarly, if v =v,(x,y,2)j or v =v3(x,y, 2)k, we respectively obtained
d
Jo vedr= [, vodx = [, vy(x(®),y(t), 2(t)) %dt

and fC V. dr = fC ‘U3 dx = fC Ug(x(t); }/(t): Z(t)) ‘(ii_)t,dt
44.2.2 Example

Evaluate the line integral of v = xyi + y?j + e?k over the curve C whose parametric
representation is given by x = t2,y = 2t,0 <t < 1.

Solution:

The position vector of any point on C is given by r = t%i + 2tj + tk. We have
d 1 . . . .
Je v.i dt = | (230 + 4t%j + e'k). (2ti + 2j + k)dt
1 37
= [, (4t* +8t> +e)dt =-+e
44.2.3 Example
Evaluate the integral [ (x* + yz)dz, where C isgivenby x = t,y = t*z=3t,1 <t < 2.
Solution:
2 163
We have [ (x* +yz)dz =2 [[(t* +3t>) dt = e

44.3 Line Integral of Scalar Fields

Let C be a smooth curve whose parametric representation is as given in Egs. (44.1.1) and
(44.1.2). Let f(x,v,2), g(x,y,2z) and h(x,y,z)be scalar fields which are continuous at
point over C. Then, we define a line integral as

Jo floy 2)dx + g(x,y,2)dy + h(x,y,2z)dz
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=J; [f(x(t), y(t), 2()) Z—f +g(x(@®),y(@®), z(®)) i—f +h(x(t),y(0),z(t)) Z_i] dr

If C is closed curve, then we usually write
Jo vodr=4¢, v.dr
44.3.1 Example
Evaluate [ (x +y)dx — x*dy + (y + z)dz ,where Cisx* =4y, z=x, 0 <t <2

Solution

2
First we consider parametric formof Casx =t,y = %,z =2, 0<t<2

Therefore,

2 t2 t t2 10
Jo Gk +y)dx —x*dy + (y + 2)dz = | [(t+ T) — t? (E) + (T-I_t)] dt = —
44.4 Application of Line Integrals
In this section, we consider some physical applications of the concept of line integral.

44.4.1 Work Done By A Force

Let v(x,y,2) =vi(x,y,2)i + v,(x,y,2)j + v3(x,y,2)k be a vector function defined and
continuous at every point on C. Then the line integral of tangential component of v along the

curve C from a point P to the point Q is given by

fPQv.dr = [, v.dr = [ vidx +v,dy +v3dz

Let now v = F, a variable force acting on a particle which moves along a curve C. Then, the
work W done by the force F in displacing the particle from the point P to the point P along

the curve C is given by
W= [lF.dr=[.F.dr

where C* is the part ofC , whose initial and terminal point are P and Q.

Suppose that Fis a conservative vector field . Then F can be written as F = grad(f), where f

is a scalar potential(field). Then, the work done

W=[.F.dr=[.grad(f).dr
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i d 9 Q
= [ (Grdx +50dy +50dz) = [ df = [f(x,y,2)]3
44.4.1 Example

Find the work done by the force F = —xyi + y?j + zk in moving a particle over the circular
pathx? + y? = 4,z = 0 form (2,0,0) to (0,2,0).

Solution
The parametric representation of the given curve is x = 2cott,y = 2sint,z=0, 0 <t <
72 . Therefore, work done /#/is given by
— — 2
W =[.F.dr=[, —xydx+y*dy+zdz

m/2 16
f [—4sintcost (—=2sint) + 4 sin® t(2cos) | dt = 3
0

44.4.2 Circulation

A line integral of a vector field v around a simple closed curve C is defined as the
circulation of v around C.

. . dr
Circulation = ¢, v.dr = ¢, v.—ds=¢ v.Tds,

where T is the tangent vector to C. For example, in fluid mechanics, let v represents the
velocity field of a fluid and C be a closed curve in its domain. Then, circulation gives the
amount by which the fluid tends to turn the curve rotating or circulating around C. If

gﬁc v.Tds > 0 then the fluid tends to rotate Cin the anti-clockwise direction, while if
gﬁc v.Tds < 0, then the fluid tends to rotate C in the clockwise direction perpendicular toT

at every point on C, then 99C v.Tds = 0, that is the curve does not move at all.
44.5 Line Integral Independent of the Path
Let ¢ (x, y, z) be a differentiable scalar function. The differential of ¢ (x, y, z) is defined as
— 9 9 L
do = ™ dx + 7y dy + Py dz =grad ¢.dr

Therefore, a differential expression expre d¢ = f(x,y,z)dx + g(x,y,z)dy + h(x,y,z)dz is
an exact differential, if there exists a scalar function ¢ (x, y, z) such that

dop = f(x,y,z2)dx + g(x,y,z)dy + h(x,y,z)dz.

We now present the result on the independence of the path of a line integral
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44.5.1 Theorem

Let C be a curve in simply connected domain D in space. Let f,g and h be continuous

function having continuous first partial derivatives in D. Then fC fdx + gdy + hdz is
independent of path C if and only if the integrand is exact differential in D.

44.5.2 Example

xdx +ydy .

Nz
origin. Find the value of the integral from the point P(—1,2) to the point Q(2,3).

Show that f is independent of path of integration which does not pass through the

Solution

We havef(x,y)=JxeTy2 and g(x,y) = 2—+y

NOW% = —xy/(x* +y%)3/? and Z—i = —xy/(x* + y?)3/2

of

Since = a—f , the integral is independent of any path of integration which does not pass

through the origin. Also, the integrand is an exact differential. Therefore, there exists a
function ¢ (x, y) such that

%zf(xry)z\/Tyzand _g(x Y)_

2+y

Integrating the first equation with respect to x, we get ¢(x,y) = \/x? + y? + h(y).
Yy _ Yy
VaZay? T fxZay?

Hence ¢ (x,y) = /x2 +y2 + k
d. +d 2,3 2,3
Therefore, [, == yy [ED AT+ YD) =[x + y? 10, = V13 =45

(12)

ituting in 22 — dn o dh _
Substituting in 3y = + ™ or ol 0 or h(y) = k, constant.
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