
Module-IV: Vector Calculus 

Lesson 44 

Line Integral 

44.1 Introduction 

Let 𝐶𝐶 be a simple curve. Let the parametric representation of 𝐶𝐶 be written as  

                             𝑥𝑥 = 𝑥𝑥(𝑡𝑡),𝑦𝑦 = 𝑦𝑦(𝑡𝑡), 𝑧𝑧 = 𝑧𝑧(𝑡𝑡), 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏                                     (44.1.1) 

Therefore, the position vector of appoint on the curve 𝐶𝐶 can be written as  

                                  𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘,𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏                                (44.1.2) 

44.2 Line Integral with Respect to Arc Length 

Let 𝐶𝐶 be a simple smooth curve whose parametric representation is given as Eqs.(1) and (2). 
Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) be continuous on 𝐶𝐶. Then, we define the line integral 𝑓𝑓 of over 𝐶𝐶 with respect 
to the arc length 𝑠𝑠 by 

     ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐶𝐶 𝑑𝑑𝑠𝑠 = ∫ 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡))�𝑥𝑥 ′(𝑡𝑡)2 + 𝑦𝑦 ′(𝑡𝑡)2 + 𝑧𝑧 ′(𝑡𝑡)2𝑏𝑏
𝑎𝑎  𝑑𝑑𝑡𝑡 

since 

   𝑑𝑑𝑠𝑠 = 𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

 𝑑𝑑𝑡𝑡 = ��𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
�

2
+ �𝑑𝑑𝑦𝑦

𝑑𝑑𝑡𝑡
�

2
+ �𝑑𝑑𝑧𝑧

𝑑𝑑𝑡𝑡
�

2
 𝑑𝑑𝑡𝑡  

 

44.2.1 Example  

Evaluate  ∫ (𝑥𝑥2 + 𝑦𝑦𝑧𝑧)𝑑𝑑𝑠𝑠𝐶𝐶 , where 𝐶𝐶 is the curve defined by 𝑥𝑥 = 4𝑦𝑦, 𝑧𝑧 = 3 form (2, 1
2

, 3) to 
(4,1,3). 

Solution 

Let 𝑥𝑥 = 𝑡𝑡. Then, 𝑦𝑦 = 𝑡𝑡/4  and 𝑧𝑧 = 3. Therefore, the curve 𝐶𝐶  represented by 

 𝑥𝑥 = 𝑡𝑡, 𝑦𝑦 = 𝑡𝑡
4

, 𝑧𝑧 = 3, 2 ≤ 𝑡𝑡 ≤ 3.  

We have 𝑑𝑑𝑠𝑠 = √17/4. 

Hence  ∫ (𝑥𝑥2 + 𝑦𝑦𝑧𝑧)𝑑𝑑𝑠𝑠𝐶𝐶 = √17
4 ∫ �𝑡𝑡2 + 3

4
𝑡𝑡� 𝑑𝑑𝑡𝑡 = 139√17

24
.4

2  

44.2.2 Line Integral of Vector Fields  

Let 𝐶𝐶 be a smooth curve whose parametric representation is given in Eqs. (44.1.1) and 
(44.1.2). Let  
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                    𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖 + 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 + 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘 

   be a vector field that is continuous on 𝐶𝐶. Then, the line integral of 𝑣𝑣 over 𝐶𝐶 is defined by 

                   ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟 = ∫ 𝑣𝑣1𝑑𝑑𝑥𝑥 + 𝑣𝑣2𝑑𝑑𝑦𝑦 + 𝑣𝑣3𝑑𝑑𝑧𝑧𝐶𝐶𝐶𝐶      

                                     = ∫ 𝑣𝑣�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)�𝐶𝐶 . 𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

 𝑑𝑑𝑡𝑡                                             (44.2.1) 

If   𝑣𝑣 = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖, then Eq.( 44.2.1) reduces to  

                  ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟 = ∫ 𝑣𝑣1𝐶𝐶 𝑑𝑑𝑥𝑥 = ∫ 𝑣𝑣1(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡𝐶𝐶𝐶𝐶  

Similarly, if  𝑣𝑣 = 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 or  𝑣𝑣 = 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘, we respectively obtained  

                   ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟 = ∫ 𝑣𝑣2𝐶𝐶 𝑑𝑑𝑥𝑥 = ∫ 𝑣𝑣2(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡𝐶𝐶𝐶𝐶  

and            ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟 = ∫ 𝑣𝑣3𝐶𝐶 𝑑𝑑𝑥𝑥 = ∫ 𝑣𝑣3(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡𝐶𝐶𝐶𝐶 . 

44.2.2 Example  

Evaluate the line integral of 𝑣𝑣 = 𝑥𝑥𝑦𝑦𝑖𝑖 + 𝑦𝑦2𝑗𝑗 + 𝑒𝑒𝑧𝑧𝑘𝑘 over the curve 𝐶𝐶 whose parametric 
representation is given by 𝑥𝑥 = 𝑡𝑡2,𝑦𝑦 = 2𝑡𝑡, 0 ≤ 𝑡𝑡 ≤ 1. 

Solution: 

The position vector of any point on 𝐶𝐶 is given by 𝑟𝑟 = 𝑡𝑡2𝑖𝑖 + 2𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑘𝑘. We have  

                  ∫ 𝑣𝑣. 𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

 𝑑𝑑𝑡𝑡 = ∫ (2𝑡𝑡3𝑖𝑖 + 4𝑡𝑡2𝑗𝑗 + 𝑒𝑒𝑡𝑡𝑘𝑘). (2𝑡𝑡𝑖𝑖 + 2𝑗𝑗 + 𝑘𝑘)𝑑𝑑𝑡𝑡1
0𝐶𝐶    

                                        = ∫ (4𝑡𝑡4 + 8𝑡𝑡2 + 𝑒𝑒𝑡𝑡)𝑑𝑑𝑡𝑡 = 37
15

+ 𝑒𝑒1
0  

44.2.3 Example 

Evaluate  the integral ∫ (𝑥𝑥2 + 𝑦𝑦𝑧𝑧)𝑑𝑑𝑧𝑧𝑐𝑐 , where 𝐶𝐶 is given by 𝑥𝑥 = 𝑡𝑡,𝑦𝑦 = 𝑡𝑡2, 𝑧𝑧 = 3𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 2. 

Solution:  

      We have ∫ (𝑥𝑥2 + 𝑦𝑦𝑧𝑧)𝑑𝑑𝑧𝑧𝑐𝑐 = 2∫ (𝑡𝑡2 + 3𝑡𝑡3)2
1 𝑑𝑑𝑡𝑡 = 163

4
  

44.3 Line Integral of Scalar Fields 

Let 𝐶𝐶 be a smooth curve whose parametric representation is as given in Eqs. (44.1.1) and 
(44.1.2). Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and  ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)be scalar fields which are continuous at 
point over 𝐶𝐶. Then, we define a line integral as  

  ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥 + 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑦𝑦 + ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧 𝐶𝐶   
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         = ∫ �𝑓𝑓�𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑔𝑔�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

+ ℎ�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑧𝑧
𝑑𝑑𝑡𝑡
� 𝑑𝑑𝑡𝑡𝐶𝐶   

 

 If 𝐶𝐶 is closed curve, then we usually write  

                           ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟𝐶𝐶 = ∮ 𝑣𝑣.𝑑𝑑𝑟𝑟𝐶𝐶  

44.3.1 Example  

Evaluate ∫ (𝑥𝑥 + 𝑦𝑦)𝑑𝑑𝑥𝑥 − 𝑥𝑥2𝑑𝑑𝑦𝑦 + (𝑦𝑦 + 𝑧𝑧)𝑑𝑑𝑧𝑧𝐶𝐶  , where 𝐶𝐶 is 𝑥𝑥2 = 4𝑦𝑦, 𝑧𝑧 = 𝑥𝑥, 0 ≤ 𝑡𝑡 ≤ 2. 

 Solution 

First we consider parametric form of 𝐶𝐶 as 𝑥𝑥 = 𝑡𝑡,𝑦𝑦 = 𝑡𝑡2

4
, 𝑧𝑧 = 2, 0 ≤ 𝑡𝑡 ≤ 2.   

Therefore, 

          ∫ (𝑥𝑥 + 𝑦𝑦)𝑑𝑑𝑥𝑥 − 𝑥𝑥2𝑑𝑑𝑦𝑦 + (𝑦𝑦 + 𝑧𝑧)𝑑𝑑𝑧𝑧𝐶𝐶 = ∫ ��𝑡𝑡 +  𝑡𝑡
2

4
� − 𝑡𝑡2 �𝑡𝑡

2
� + �𝑡𝑡

2

4
+ 𝑡𝑡�� 𝑑𝑑𝑡𝑡2

0 = 10
3

            

44.4 Application of Line Integrals 

In this section, we consider some physical applications of the concept of line integral. 

44.4.1 Work Done By A Force    

Let  𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖 + 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 + 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘  be a vector function defined and 
continuous at every point on 𝐶𝐶. Then the line integral of tangential component of 𝑣𝑣 along the 
curve 𝐶𝐶  from a point 𝑃𝑃 to the point 𝑄𝑄 is given by  

                     ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟𝑄𝑄
𝑃𝑃 = ∫ 𝑣𝑣.𝑑𝑑𝑟𝑟 = ∫ 𝑣𝑣1𝑑𝑑𝑥𝑥 + 𝑣𝑣2𝑑𝑑𝑦𝑦 + 𝑣𝑣3𝑑𝑑𝑧𝑧𝑐𝑐𝐶𝐶    

Let now 𝑣𝑣 = 𝐹𝐹, a variable force acting on a particle which moves along a curve 𝐶𝐶. Then, the 
work 𝑊𝑊 done by the force 𝐹𝐹 in displacing the particle from the point 𝑃𝑃 to the point 𝑃𝑃 along 
the curve 𝐶𝐶 is given by  

                               𝑊𝑊 = ∫ 𝐹𝐹.𝑑𝑑𝑟𝑟 = ∫ 𝐹𝐹.𝑑𝑑𝑟𝑟𝐶𝐶∗
𝑄𝑄
𝑃𝑃  

where 𝐶𝐶∗ is the part of𝐶𝐶 , whose initial and terminal point are 𝑃𝑃 and 𝑄𝑄. 

Suppose that 𝐹𝐹is a conservative vector field . Then 𝐹𝐹 can be written as 𝐹𝐹 = grad(𝑓𝑓), where 𝑓𝑓 
is a scalar potential(field). Then, the work done 

       𝑊𝑊 = ∫ 𝐹𝐹.𝑑𝑑𝑟𝑟 = ∫ 𝑔𝑔𝑟𝑟𝑎𝑎𝑑𝑑(𝑓𝑓).𝑑𝑑𝑟𝑟𝐶𝐶∗𝐶𝐶∗   
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            = ∫ ( 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
𝑑𝑑𝑥𝑥 + 𝜕𝜕𝑓𝑓

𝜕𝜕𝑦𝑦
𝑑𝑑𝑦𝑦 + 𝜕𝜕𝑓𝑓

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧)𝐶𝐶∗ = ∫ 𝑑𝑑𝑓𝑓𝑄𝑄

𝑃𝑃 = [𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)]𝑃𝑃
𝑄𝑄       

44.4.1 Example 

Find the work done by the force 𝐹𝐹 = −𝑥𝑥𝑦𝑦𝑖𝑖 + 𝑦𝑦2𝑗𝑗 + 𝑧𝑧𝑘𝑘 in moving a particle over the circular 
path𝑥𝑥2 + 𝑦𝑦2 = 4, 𝑧𝑧 = 0 form (2,0,0) to (0,2,0). 

Solution          

The parametric representation  of the given curve is 𝑥𝑥 = 2 cot 𝑡𝑡,𝑦𝑦 = 2 sin 𝑡𝑡, 𝑧𝑧 = 0, 0 ≤ 𝑡𝑡 ≤
𝜋𝜋2 . Therefore, work done 𝑊𝑊 is given by  

𝑊𝑊 = ∫ 𝐹𝐹.𝑑𝑑𝑟𝑟𝐶𝐶 = ∫ −𝑥𝑥𝑦𝑦𝑑𝑑𝑥𝑥 + 𝑦𝑦2𝑑𝑑𝑦𝑦 + 𝑧𝑧𝑑𝑑𝑧𝑧𝐶𝐶    

� [−4 sin 𝑡𝑡 cos 𝑡𝑡 (−2 sin 𝑡𝑡 ) + 4 𝑠𝑠𝑖𝑖𝑠𝑠2 𝑡𝑡(2𝑐𝑐𝑐𝑐𝑠𝑠) ] 𝑑𝑑𝑡𝑡  
𝜋𝜋/2

0
=

16
13

 

44.4.2 Circulation 

A line integral  of a vector field 𝑣𝑣 around a simple closed curve  𝐶𝐶 is defined as the 
circulation of 𝑣𝑣 around 𝐶𝐶.  

Circulation = ∮ 𝑣𝑣.𝑑𝑑𝑟𝑟𝐶𝐶 = ∮ 𝑣𝑣. 𝑑𝑑𝑟𝑟
𝑑𝑑𝑠𝑠

 𝑑𝑑𝑠𝑠 = ∮ 𝑣𝑣.𝑇𝑇𝑑𝑑𝑠𝑠𝑐𝑐𝐶𝐶 , 

where 𝑇𝑇 is the tangent vector to 𝐶𝐶. For example, in fluid mechanics, let 𝑣𝑣  represents the 
velocity field of a fluid and 𝐶𝐶 be a closed curve in its domain. Then, circulation gives the 
amount by which the fluid tends to turn the curve rotating or circulating around 𝐶𝐶. If 

∮ 𝑣𝑣.𝑇𝑇𝑑𝑑𝑠𝑠𝑐𝑐 > 0 then the fluid tends to rotate 𝐶𝐶in the anti-clockwise direction, while if 

∮ 𝑣𝑣.𝑇𝑇𝑑𝑑𝑠𝑠𝑐𝑐 < 0 , then the fluid tends to rotate 𝐶𝐶 in the clockwise direction perpendicular to𝑇𝑇 

at every point on 𝐶𝐶, then ∮ 𝑣𝑣.𝑇𝑇𝑑𝑑𝑠𝑠𝑐𝑐 = 0, that is the curve does not move at all. 

44.5 Line Integral Independent of the Path 

Let 𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) be a differentiable scalar function. The differential of 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is defined as 

                   𝑑𝑑𝜙𝜙 = 𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
𝑑𝑑𝑥𝑥 + 𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝑑𝑑𝑦𝑦 + 𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝑑𝑑𝑧𝑧 =grad 𝜙𝜙.𝑑𝑑𝑟𝑟 

Therefore, a differential expression expre 𝑑𝑑𝜙𝜙 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥 + 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑦𝑦 + ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧 is 
an exact differential, if there exists a scalar function 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) such that 

                  𝑑𝑑𝜙𝜙 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥 + 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑦𝑦 + ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧. 

 We now present the result on the independence of the path of a line integral 
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44.5.1 Theorem 

Let 𝐶𝐶 be a curve in simply connected domain 𝐷𝐷 in space. Let 𝑓𝑓,𝑔𝑔 and ℎ be continuous 

function having continuous first partial derivatives in 𝐷𝐷. Then ∫ 𝑓𝑓𝑑𝑑𝑥𝑥 + 𝑔𝑔𝑑𝑑𝑦𝑦 + ℎ𝑑𝑑𝑧𝑧𝐶𝐶  is 
independent of path 𝐶𝐶 if and only if the integrand is exact differential in 𝐷𝐷. 

44.5.2 Example  

Show that ∫ 𝑥𝑥𝑑𝑑𝑥𝑥+𝑦𝑦𝑑𝑑𝑦𝑦
�𝑥𝑥2+𝑦𝑦2𝐶𝐶  is independent of path of integration which does not pass through the 

origin. Find the value of the integral from the point 𝑃𝑃(−1,2) to the point 𝑄𝑄(2,3). 

Solution 

We have 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥
�𝑥𝑥2+𝑦𝑦2   and   𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑦𝑦

�𝑥𝑥2+𝑦𝑦2 

Now 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=  −𝑥𝑥𝑦𝑦/(𝑥𝑥2 + 𝑦𝑦2)3/2  and  𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥

= −𝑥𝑥𝑦𝑦/(𝑥𝑥2 + 𝑦𝑦2)3/2 

Since 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

 , the integral is independent of any path of integration which does not pass 
through the origin. Also, the integrand is an exact differential. Therefore, there exists a 
function 𝜙𝜙(𝑥𝑥, 𝑦𝑦) such that  

         𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

= 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥
�𝑥𝑥2+𝑦𝑦2 and  𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
= 𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑦𝑦

�𝑥𝑥2+𝑦𝑦2 

Integrating the first equation with respect to 𝑥𝑥, we get 𝜙𝜙(𝑥𝑥,𝑦𝑦) = �𝑥𝑥2 + 𝑦𝑦2 + ℎ(𝑦𝑦). 

Substituting in 𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

= 𝑦𝑦
�𝑥𝑥2+𝑦𝑦2 = 𝑦𝑦

�𝑥𝑥2+𝑦𝑦2 + 𝑑𝑑ℎ
𝑑𝑑𝑦𝑦

  or 𝑑𝑑ℎ
𝑑𝑑𝑦𝑦

= 0 or ℎ(𝑦𝑦) = 𝑘𝑘, constant. 

Hence 𝜙𝜙(𝑥𝑥,𝑦𝑦) = �𝑥𝑥2 + 𝑦𝑦2 + 𝑘𝑘 

Therefore, ∫ 𝑥𝑥𝑑𝑑𝑥𝑥+𝑦𝑦𝑑𝑑𝑦𝑦
�𝑥𝑥2+𝑦𝑦2𝐶𝐶 = ∫ 𝑑𝑑(�𝑥𝑥2 + 𝑦𝑦2)(2,3)

(−1,2) = [�𝑥𝑥2 + 𝑦𝑦2](−1,2)
(2,3) = √13 − √5 
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