LESSON 1 - Question Bank

[A] Answer the following in short

- 1. What are magnetic and non-magnetic materials?
- 2. What is magnetic field?
- 3. Define magnetic dipole.
- 4. What is magnetic moment?
- 5. Explain: magnetic induction.
- 6. What is magnetic field strength?
- 7. What is meant by magnetization?
- 8. Define the term magnetic susceptibility.
- 9. Define magnetic permeability.
- 10. What is magnetic field intensity?
- 11.Define: magnetic flux density
- 12. What are the different types of magnetic materials?

[B] Answer the following in detail

- 1. What is meant by permanent dipole moment? Explain the origin of permanent dipole moment in magnetic materials?
- **2.** What is a magnetic material? Distinguish between a hard and soft magnetic material.

[C] Calculate the following examples

(1) A magnetic material has magnetization of $2300Am^{-1}$ and produces a flux density of $0.00314Wbm^{-2}$. Calculate the magnetizing force and the relative permeability of the material.

Magnetization $M = 2300 Am^{-1}$

Flux density $B = 0.00314Wbm^{-2}$

 $\mu_0 = 4\pi \times 10^{-7}$

Magnetizing force $H = \frac{B}{\mu_0} - M = 198.7 Am^{-1}$

Susceptibility $\chi = \frac{M}{H} = \mu_r - 1$

(2) A paramagnetic has a magnetic field intensity of $10^4 Am^{-1}$. If the susceptibility of the material at room temperature is 3.7×10^{-3} . Calculate the magnetization and flux density.

(3) The magnetic field strength of copper is $10^6 Am^{-1}$. If the magnetic susceptibility of copper is -8.7×10^{-5} . Calculate the flux density and magnetization in copper.

(4) A magnetic field of $1800Am^{-1}$ produces a magnetic flux of 3×10^{-5} weber in an iron bar of cross sectional area $0.2cm^2$. Calculate permeability.

Magnetic field intensity $H = 1800Am^{-1}$

Magnetic flux $\varphi = 3 \times 10^{-5} weber$

Area of cross section $A = 0.2 \times 10^{-4} m^2$

Magnetic flux density $B = \frac{\varphi}{A}$

Permeability $\mu = \frac{B}{H}$

(5) The magnetic field strength of copper is $10^7 Am^{-1}$. If the magnetic susceptibility of copper is -0.5×10^{-5} . Calculate the flux density and magnetization in copper.