
Module 1: Numerical Analysis 
 

Lesson 22 

Gaussian Quadrature 

 

22.1 Introduction: The problem of numerical integration is to find an 

approximate value for 
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where  is a positive valued continuous  function defined on  called 

the weight function. The function  is assumed to be integrable. The 

limits  and  are finite, semi-infinite or infinite. The integral ( ) is 

approximated by a finite linear combination of ( )kf x  in the form 
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where , 0,1,...,kx k N= are called the nodes which are distributed within the 

limits of integration  and  , 0,1,...,k k Nλ =  are called the discrete weights. 

The formula ( ) is also known as the quadrature formula. 

 

The error in this approximation is given as 
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An integration method of the form ( ) is said to be order  if it produces 

exact results i.e.; 0NR = for all polynomials of degree less than or equal to .  

In evaluating the integral ( ) using ( ) involves finding  

unknown weights kλ ’s and  unknown nodes kx ’s  leading to computing 
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 unknowns. To compute these unknowns, the method (22.2) is made 

exact for polynomial of degree less than or equal to , for example, by 

considering  2 2 1
0 1 2 2 1( ) ... N

Nf x c c x c x c x +
+= + + + + . 

For example, when , then 
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When the nodes kx are known, the corresponding methods are called Newton-

Cotes methods where the nodes are also to be determined, then the methods are 

called the quadrature methods.   

 

The interval of integration  is always transformed to  using the 

transformation 
2 2
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. Depending on the weight function  

a variety of methods are developed. We discuss here the Gauss-Legendre 

integration method for which the weight function . 

 

22.2 Gauss-Legendre Integration Methods 

Consider evaluating the integral 
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where kx are the nodes and kλ are the weights. 

(I) One Point formula : The formula is 
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In the above 0 0, xλ are unknowns, these are obtained by making this integration 

method exact for . 
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i.e., (a)   
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(II) The two point formula : The formula is given by  
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The unknowns are 0 1 0 1, , ,x xλ λ . These unknowns are determined by making this 

method exact for 2 3( ) 1, , ,f x x x x= ; we get 

0 1( ) 1 2f x λ λ= ⇒ + = . 

0 0 1 1( ) 0f x x x xλ λ= ⇒ + = . 

2 2 2
0 0 1 1

2( )
3

f x x x xλ λ= ⇒ + = . 

3 3 3
0 0 1 0( ) 0f x x x xλ λ= ⇒ + = . 

 

Solving these non-linear equations we obtain 

0 1
1 1,
3 3

x x= ± =  ,  0 1 1λ λ= = . 

 

And the two point Gauss-Legendre method is given by 
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Exercise: Show that the three point Gauss-Legendre method is given by 



Gaussian Quadrature 

1

1

1 3 3( ) [5 ( ) 8 (0) 5 ( )].
9 5 5

f x dx f f f
−

= − + +∫  

 

Example 1: Evaluate the integral   
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using the Gauss-Legendre -point quadrature rule. 

 

Solution:  

The general quadrature formula is written in .  

So define        ( ) ( )
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The integral transforms to    
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Using then -point rule, we get 
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( ) ( )1 5 0.4393 8(0.2474) 5 0.1379
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0.5406=  

We can directly integrate 
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and its integral is 1tan (4) 0.5404
4
π− − = . 

 

Example 2: Evaluate the integral 
1

0

1
1

dx
x+∫  using the Gauss-Legendre two point 

formula. 

 

Solution:   
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Define 1 1 1
2 2 2

x t dx dt= + ⇒ = . 
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0.69231=  

 

Exercises:   Evaluate (a) 
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using Gauss-Legendre (i) -point (ii) -point quadrature methods.  
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