Milk Protein

MILK PROTEIN

General Protein Definition & Chemistry

  • Proteins are chains of amino acid molecules connected by peptide bonds.
  • There are many types of proteins and each has its own amino acid sequence (typically containing hundreds of amino acids). There are 22 different amino acids that can be combined to form protein chains. There are 9 amino acids that the human body cannot make and must be obtained from the diet. These are called the essential amino acids.
  • The amino acids within protein chains can bond across the chain and fold to form 3-dimensional structures. Proteins can be relatively straight or form tightly compacted globules or be somewhere in between. The term “denatured” is used when proteins unfold from their native chain or globular shape. Denaturing proteins is beneficial in some instances, such as allowing easy access to the protein chain by enzymes for digestion, or for increasing the ability of the whey proteins to bind water and provide a desirable texture in yogurt production.

Milk Protein Chemistry

  • Milk contains about 3.3% total protein. Milk proteins contain all 9 essential amino acids required by humans. Milk proteins are synthesized in the mammary gland, but 60% of the amino acids used to build the proteins are obtained from the cow's diet. Total milk protein content and amino acid composition varies with cow breed and individual animal genetics.
  • There are 2 major categories of milk protein that are broadly defined by their chemical composition and physical properties. The casein family contains phosphorus and will coagulate or precipitate at pH 4.6. The serum (whey) proteins do not contain phosphorus, and these proteins remain in solution in milk at pH 4.6. The principle of coagulation, or curd formation, at reduced pH is the basis for cheese curd formation. In cow's milk, approximately 82% of milk protein is casein and the remaining 18% is serum, or whey protein.
  • The casein family of protein consists of several types of caseins (α-s1, α-s2 , ß, and 6) and each has its own amino acid composition, genetic variations, and functional properties. The caseins are suspended in milk in a complex called a micelle.
  • The serum (whey) protein family consists of approximately 50% ß-lactoglobulin, 20% α-lactalbumin, blood serum albumin, immunoglobulins, lactoferrin, transferrin, and many minor proteins and enzymes. The functions of many whey proteins are not clearly defined, and they may not have a specific function in milk but may be an artifact of milk synthesis. The function of ß-lactoglobulin is thought to be a carrier of vitamin A. It is interesting to note that ß-lactoglobulin is not present in human milk. α-Lactalbumin plays a critical role in the synthesis of lactose in the mammary gland. Immunoglobulins play a role in the animal's immune system, but it is unknown if these functions are transferred to humans. Lactoferrin and transferrin play an important role in iron absorption and there is interest in using bovine milk as a commercial source of lactoferrin.

Milk Protein Physical Properties

  • The caseins in milk form complexes called micelles that are dispersed in the water phase of milk. The casein micelles consist of subunits of the different caseins (α-s1, α-s2 and ß) held together by calcium phosphate bridges on the inside, surrounded by a layer of 6-casein which helps to stabilize the micelle in solution.
  • Casein micelles are spherical and are 0.04 to 0.3 µm in diameter, much smaller than fat globules which are approximately 1 µm in homogenized milk. The casein micelles are porous structures that allow the water phase to move freely in and out of the micelle. Casein micelles are stable but dynamic structures that do not settle out of solution.
  • The whey proteins exist as individual units dissolved in the water phase of milk.
Last modified: Thursday, 12 April 2012, 6:39 AM