Site pages
Current course
Participants
General
Module 1. Average and effective value of sinusoida...
Module 2. Independent and dependent sources, loop ...
Module 3. Node voltage and node equations (Nodal v...
Module 4. Network theorems Thevenin’ s, Norton’ s,...
Module 5. Reciprocity and Maximum power transfer
Module 6. Star- Delta conversion solution of DC ci...
Module 7. Sinusoidal steady state response of circ...
Module 8. Instantaneous and average power, power f...
Module 9. Concept and analysis of balanced polypha...
Module 10. Laplace transform method of finding ste...
Module 11. Series and parallel resonance
Module 12. Classification of filters
Module 13. Constant-k, m-derived, terminating half...
LESSON 15. Sinusoidal Response of R-L & R-C Circuit
15.1. Sinusoidal Response of R-L Circuit
Consider a circuit consisting of resistance and inductance as shown in Fig.15.1. The switch, S, is closed at t=0. At t=0, a sinusoidal voltage V cos (wt+q) is applied to the series R-L circuit, where V is the amplitude of the wave and q is the phase angle. Application of Kirchhoff’s voltage law to the circuit results in the following differential equation.
Fig.15.1
\[V\,\cos \,\left( {\omega t + \theta } \right)=Ri + L{{di} \over {dt}}...................................................\left( {15.1} \right)\]
\[{{di} \over {dt}} + {R \over L}i={V \over L}\,\,\cos \,\left( {\omega t + \theta } \right)\]
The corresponding characteristic equation is
\[\left( {D + {R \over L}} \right)i={{} \over L}\,\cos \,\left( {\omega t + \theta } \right)...................................................\left( {15.2} \right)\]
For the above equation, the solution consists of two parts, viz. complementary function and particular integral.
The complementary function of the solution i is
\[{i_c}=c{e^{ - t\left( {R/L} \right)}}...................................................\left( {15.3} \right)\]
The particular solution can be obtained by using undetermined co-efficient.
By assuming \[{i_p}=A\,\cos \,\left( {\omega t + \theta } \right) + B\,\,\sin \,\left( {\omega t + \theta } \right)...................................................\left( {15.4} \right)\]
\[i_p^'=A\omega \,\sin \,\left( {\omega t + \theta } \right) + B\omega \,\cos \,\left( {\omega t + \theta } \right)...................................................\left( {15.5} \right)\]
Substituting Eqs. 15.4 and 15.5 in Eq.15.2, we have
\[\left\{ { - A\omega \,\sin \,\left( {\omega t + \theta } \right) + \,B\omega \,\cos \left( {\omega t + } \right)} \right\} + {R \over L}\left\{ {A\,\cos \,\left( {\omega t + \theta } \right) + B\,\,\sin \,\,\left( {\omega t + \theta } \right)} \right\}={V \over L}\cos \,\left( {\omega t + \theta } \right)\]
or \[\left({ - A\omega + {{BR} \over L}} \right)\,\sin \,\left({\omega t+\theta}\right) + \left({B\omega + {{AR}\over L}}\right)\,\cos \,\,\left( {\omega t + \theta }\right)={V \over L}\,\cos \,\left({\omega t + \theta }\right)\]
Comparing cosine terms and sine terms, we get
\[-A\omega+{{BR}\over L}=0\]
\[B\omega+{{AR} \over L}={V \over L}\]
From the above equations, we have
\[A=V{R \over {{R^2} + {{\left( {\omega L} \right)}^2}}}\]
\[B=V{{\omega L} \over {{R^2} + {{\left( {\omega L} \right)}^2}}}\]
Substituting the values of A and B in Eq.11.20, we get
\[{i_p}=V{R \over {{R^2} + {{\left( {\omega L} \right)}^2}}}\cos \,\left( {\omega t + \theta } \right) + V{{\omega L} \over {{R^2} + {{\left( {\omega L} \right)}^2}}}\,\sin \,\left( {\omega t + \theta } \right)...................................................\left( {15.6} \right)\]
Putting \[M\,\cos\,\phi={{VR}\over{{R^2}+{{\left({\omega L}\right)}^2}}}\]
\[M\,\sin\,\phi=\,V{{\omega L}\over{{R^2}+{{\left({\omega L} \right)}^2}}}\]
to find M and ø, we divide one equation by the other
\[{{M\,\sin \,\phi} \over {M\,\cos \,\phi}}=\,\tan \,\phi \,=\,{{\omega L} \over R}\,\]
Squaring both equation and adding, we get
\[{M^2}\,{\cos ^2}\,\phi+{M^2}\,{\sin ^2}\,\phi={{{V^2}} \over {{R^2} + {{\left( {\omega L} \right)}^2}}}\]
or \[M={V \over {\sqrt {{R^2} + {{\left( {\omega L} \right)}^2}} }}\]
The particular current becomes
\[{i_p}={V\over{\sqrt{{R_2}+{{\left({\omega L}\right)}^2}}}}\,\cos\,\left({\omega t+\theta-{{\tan}^{-1}}{{\omega L}\over R}} \right)...................................................\left( {15.7} \right)\]
The complete solution for the current \[i={i_c} + {i_p}\]
\[i=c{e^{-t\left({R/L} \right)}} + {V \over{\sqrt{{R^2} + {{\left({\omega L} \right)}^2}}}}\,\cos \,\left({\omega t + \theta -{{\tan }^{-1}}{{\omega L} \over R}} \right)\]
Since the inductor does not allow sudden changes in currens, at t=0, i=o
\[c=-{V \over{\sqrt{{R^2} + {{\left( {\omega L}\right)}^2}} }}\,\,\cos \,\,\left( {\theta-{{\tan }^{-1}}{{\omega L}\over R}} \right)\]
The complete solution for the current is
\[i=\,{e^{-\left( {R/L} \right)t}}\left[ {{{-V} \over {\sqrt{{R^2} + {{\left( {\omega L} \right)}^2}} }}\,\,\cos \,\,\left({\theta-{{\tan }^{-1}}{{\omega L} \over R}} \right)} \right]\]
\[+{V \over{\sqrt{{R^2}+{{\left( {\omega L} \right)}^2}} }}\,\,\cos \,\,\left( {\omega t +\theta-{{\tan }^{-1}}{{\omega L}\over R}}\right)\]
15.2. Sinusoidal Response of R-C Circuit
Consider a circuit consisting of resistance and capacitance in series as shown in Fig.15.2. The switch, S, is closed at t=0. At t=0, a sinusoidal voltage V cos (wt+q) is applied to the R-C circuit, where V is the amplitude of the wave and q is the phase angle. Applying Kirchhoff’s voltage law to the circuit results in the following differential equation.
\[V\,\cos \,\left( {\omega t + \theta } \right) = Ri + {1 \over C}\int {idt} ...................................................\left( {15.8} \right)\]
\[R{{di} \over {dt}} + {i \over C}=-V\,\,\omega \,\sin \,\left( {\omega t + \theta } \right)\]
\[\left( {D + {1 \over {RC}}i=-{{V\omega } \over R}\,\sin \,\left( {\omega t + \theta } \right)} \right)...................................................\left( {15.9} \right)\]
Fig. 15.2
The complementary function ic = ce-t/RC \[...................................................\left( {15.10} \right)\]
The particular solution can be obtained by using undermined coefficients.
\[{i_p}=A\,\cos \,\left( {\omega t + \theta } \right) + B\,\sin \,\left( {\omega t + \theta } \right)...................................................\left( {15.11} \right)\]
\[i_p^'=A\omega \,\sin \,\left( {\omega t + \theta } \right) + B\omega \,\cos \,\left( {\omega t + \theta } \right)...................................................\left( {15.12} \right)\]
Substituting Eqs. 15.11 and 15.12 in Eq. 15.9, we get
\[\left\{ { - A\omega \,\sin \,\left( {\omega t + \theta } \right) + B\omega \,\cos \,\left( {\omega t + \theta } \right)} \right\} + {1 \over {RC}}\left\{ {A\,\cos \,\left( {\omega t + \theta } \right) + B\,\sin \,\left( {\omega t + \theta } \right)} \right\}\]
\[=-{{V\omega } \over {R\,}}\,\sin \,\left( {\omega t + \theta } \right)\]
Comparing both sides, \[-A\omega+{B\over{RC}}=-{{V\omega}\over R}\]
\[B\omega+{A\over{RC}}=0\]
From which,
\[A = \frac{{VR}}{{{R^2} + {{\left( {\frac{1}{{\omega c}}} \right)}^2}}}\]
and \[B = \frac{{ - V}}{{\omega C\left[ {{R^2} + {{\left( {\frac{1}{{\omega c}}} \right)}^2}} \right]}}\]
Substituting the values of A and B in Eq. 15.11, we have
\[{i_p} = \frac{{VR}}{{{R^2}+{{\left( {\frac{1}{{\omega c}}}\right)}^2}}}\,\cos\;\,\left( {\omega t+\theta }\right)+\frac{{-V}}{{\omega C\left[ {{R^2}+{{\left( {\frac{1}{{\omega C}}}\right)}^2}}\right]}}\,\sin\,\left( {\omega t+\theta } \right)\]
Putting \[M\,\cos\,\varphi=\frac{{VR}}{{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}}}\]
and \[M\,\sin\,\varphi =\frac{V}{{\omega C\left[{{R^2}+{{\left( {\frac{1}{{\omega C}}}\right)}^2}}\right]}}\]
To find M and ø, we divide one equation by the other,
\[{{M\,\sin \,\phi } \over {M\,\cos \,\phi }}=\tan \,\phi={1 \over {\omega CR}}\]
Squaring both equations and adding, we get
\[{M^2}\,{\cos ^2}\,\varphi +{M^2}\,{\sin ^2}\,\varphi =\frac{{{V^2}}}{{\left[{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}}\right]}}\]
\[M =\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}}}}\]
The particular current becomes
\[{i_p}=\frac{V}{{{R^2}+{{\left({\frac{1}{{\omega c}}}\right)}^2}}}\,\cos\;\left({\omega t+\theta+{{\tan}^{-1}}\frac{1}{{\omega CR}}}\right)...................................................\left( {15.13} \right)\]
The complete solution for the current i=ic+ip
\[{i_p}=c{e^{-\left({t/RC}\right)}}+\frac{V}{{{R^2}+{{\left({\frac{1}{{\omega c}}}\right)}^2}}}\,\cos\;\left({\omega t+\theta+{{\tan}^{-1}}\frac{1}{{\omega CR}}}\right)...................................................\left( {15.14} \right)\]
Since the capacitor does not allow sudden changes in voltages at \[t=0,\,i={V \over R}\cos \,\theta\]
\[c=\frac{V}{R}\cos\,\theta-\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}}}}\cos\left({\theta+{{\tan }^{-1}}\frac{1}{{\omega CR}}}\right)\]
\[c=\frac{V}{R}\cos\,\theta-\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}}}}\cos\left({\theta+{{\tan}^{-1}}\frac{1}{{\omega CR}}}\right)\]
The complete solution for the current is
\[i = e-\left({t/RC}\right)\left[{\frac{V}{R}\cos \,\theta-\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}}}}\cos\,\left({\theta+{{\tan}^{-1}}\frac{1}{{\omega CR}}}\right)}\right]\]
\[+\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}}\right)}^2}} }}\cos\,\left({\omega t+\theta+{{\tan}^{-1}}\frac{1}{{\omega CR}}}\right)...................................................\left( {15.15} \right)\]