Site pages
Current course
Participants
General
Module 1. Average and effective value of sinusoida...
Module 2. Independent and dependent sources, loop ...
Module 3. Node voltage and node equations (Nodal v...
Module 4. Network theorems Thevenin’ s, Norton’ s,...
Module 5. Reciprocity and Maximum power transfer
Module 6. Star- Delta conversion solution of DC ci...
Module 7. Sinusoidal steady state response of circ...
Module 8. Instantaneous and average power, power f...
Module 9. Concept and analysis of balanced polypha...
Module 10. Laplace transform method of finding ste...
Module 11. Series and parallel resonance
Module 12. Classification of filters
Module 13. Constant-k, m-derived, terminating half...
LESSON 16. Sinusoidal Response of R-L -C Circuit
16.1. Sinusoidal Response of R-L-C Circuit
Consider a circuit consisting of resistance, inductance and capacitance in series as shown in Fig.16.1. Switch S is closed at t = 0. At t = 0, a sinusoidal voltage V cos (wt+q) is applied to the RLC series circuit, where V is the amplitude of the wave and q is the phase angle. Application of Kirchhoff’s voltage law to the circuit results in the following differential equation.
\[V\;\cos \,\left( {\omega t + \theta } \right)=Ri + L{{di} \over {dt}} + {1 \over C}\int {idt} ...................................................\left( {16.1} \right)\]
Fig16.1
Differentiating the above equation, we get
\[R{{di} \over {dt}} + L{{{d^2}i} \over {d{t^2}}} + i/C=-V\omega \,\sin \,\left( {\omega t + \theta } \right)\]
\[\left( {{D^2} + {R \over L}D + {1 \over {LC}}} \right)i=-{{V\omega } \over L}\,\sin \,\left( {\omega t + \theta } \right)...................................................\left( {16.2} \right)\]
The particular solution can be obtained by using undermined coefficients. By assuming
\[{i_p}=A\,\cos \,\left( {\omega t + \theta } \right) + B\,\sin \,\left( {\omega t + \theta } \right)...................................................\left( {16.3} \right)\]
\[i_p^'=A\omega \,\sin \,\left( {\omega t + \theta } \right) + B\omega \,\cos \,\left( {\omega t + \theta } \right)...................................................\left( {16.4} \right)\]
\[i_p^{''}=A{\omega ^2}\,\cos \,\left( {\omega t + \theta } \right) + B{\omega ^2}\,\sin \,\left( {\omega t + \theta } \right)...................................................\left( {16.5} \right)\]
Substituting ip i'p and i’’p in Eq.16.2, we have
\[\left\{ { - A\omega 2\,\cos \,\left( {\omega t + \theta } \right) + B\,\sin \,\left( {\omega t + \theta } \right)} \right\} + {R \over L}\left\{ { - A\omega \,\sin \,\left( {\omega t + \theta } \right) + B\omega \,\cos \,\left( {\omega t + \theta } \right)} \right\}\]
\[+ {1 \over {LC}}\left\{ {A\,\cos \,\left( {\omega t + \theta } \right) + B\,\sin \,\left( {\omega t + \theta } \right)} \right\}=-{{V\omega } \over L}\,\sin \left( {\omega t + \theta } \right)...................................................\left( {16.6} \right)\]
Comparing both sides, we have
Sine coefficients
\[-B{\omega ^2} - A{{\omega R} \over L} + {B \over {LC}}=-{{V\omega } \over L}\]
\[A\left( {{{\omega R} \over L}} \right) + B\left( {{\omega ^2} - {1 \over {LC}}} \right)={{V\omega } \over L}...................................................\left( {16.7} \right)\]
Cosine coefficients
\[- A{\omega ^2} + B{{\omega R} \over L} + {A \over {LC}}=0\]
\[A\left( {{\omega ^2} - {1 \over {LC}}} \right) - B\left( {{{\omega R} \over L}} \right)=0...................................................\left( {16.8} \right)\]
Solving Eqs 16.7 and 16.8, we get
\[A =\frac{{V\times\frac{{{\omega^2}R}}{{{L^2}}}}}{{\left[{{{\left({\frac{{\omega R}}{L}}\right)}^2}-{{\left({{\omega ^2}=\frac{1}{{LC}}}\right)}^2}}\right]}}\]
\[B=\frac{{\left({{\omega^2}-\frac{1}{{LC}}}\right)V\omega}}{{L\left[{{{\left({\frac{{\omega R}}{L}}\right)}^2}-{{\left({{\omega^2}=\frac{1}{{LC}}}\right)}^2}}\right]}}\]
Substituting the values of A and B in Eq. 6.3, we get
\[{i_p}=\frac{{V\frac{{{\omega ^2}R}}{{{L^2}}}}}{{\left[{{{\left({\frac{{\omega R}}{L}}\right)}^2}-{{\left({{\omega ^2}-\frac{1}{{LC}}}\right)}^2}}\right]}}\cos\,\left({\omega t+\theta}\right)\]
\[+\frac{{\left({{\omega ^2}-\frac{1}{{LC}}}\right)V\omega}}{{L\left[{{{\left({\frac{{\omega R}}{L}}\right)}^2}-{{\left({{\omega ^2}-\frac{1}{{LC}}}\right)}^2}}\right]}}\sin\,\left({\omega t +\theta}\right)................................\left( {16.9} \right)\]
Putting \[M\,\cos\,\varphi=\frac{{V\frac{{{\omega^2}R}}{{{L^2}}}}}{{{{\left({\frac{{\omega R}}{L}} \right)}^2}-{{\left({{\omega ^2}-\frac{1}{{LC}}}\right)}^2}}}\]
and \[M\,\sin\,\varphi=\frac{{V\left({\omega 2-\frac{1}{{LC}}}\right)\omega}}{{L\left[{{{\left({\frac{{\omega R}}{L}}\right)}^2}-{{\left({{\omega ^2}-\frac{1}{{LC}}}\right)}^2}}\right]}}\]
To find M and ø we divide one equation by the other
or \[{{M\,\sin \,\phi} \over {M\,\cos \,\phi }}=\tan \,\phi={{\left( {\omega L - {1 \over {\omega C}}} \right)} \over R}\]
\[\phi=\tan-1\left[ {\left( {\omega L - {1 \over {\omega C}}} \right)/R} \right]\]
Squaring both equations and adding, we get
\[{M^2}\,{\cos ^2}\,\varphi \,+\,{M^2}\,{\sin ^2}\,\varphi \,=\frac{{{V^2}}}{{{R^2}+{{\left({\frac{1}{{\omega C}}-\omega L}\right)}^2}}}\]
\[M=\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}-\omega L}\right)}^2}}}}\]
The particular current becomes
\[{i_p}=\frac{V}{{\sqrt {{R^2}+{{\left({\frac{1}{{\omega C}}-\omega L} \right)}^2}}}}\cos\left[{\omega t+\theta+{{\tan}^{-1}}\frac{{\left({\frac{1}{{\omega C}}-\omega L}\right)}}{R}}\right].................................................\left( {16.10} \right)\]
The complementary function is similar to that of DC series RLC circuit. To find out the complementary function, we have the characteristic equation
\[\left( {{D^2} + {R \over L}D + {1 \over {LC}}} \right)=0...................................................\left( {16.11} \right)\]
The roots of Eq.16.11, are
\[{D_1},{D_2}={{ - R} \over {2L}} \pm \sqrt {{{\left( {{R \over {2L}}} \right)}^2} - {1 \over {LC}}}\]
By assuming \[{K_1}=-{R \over {2L}}and\,{K_2}=\sqrt {{{\left( {{R \over {2L}}} \right)}^2} - {1 \over {LC}}}\]
\[{D_1}={K_1} + {K_2}\,\,and\,\,{D_2}={K_1} - {K_2}\]
K2 becomes positive, when (R/2L)2>1/LC
The roots are real and unequal, which gives an overdamped response. Then Eq.16.11 becomes
\[\left[ {D - \left( {{K_1} + {K_2}} \right)} \right]\,\,\left[ {D - {K_1} - {K_2}} \right]i=0\]
The complementary function for the above equation is
\[{i_c}={c_1}{e^{\left( {K1 + K2} \right)t}} + {c_2}{e^{\left( {K1 - K2} \right)t}}\]
Therefore, the complete solution is
\[i={i_c} + {i_p}\]
\[{i_c}={c_1}{e^{\left({K1+K2}\right)t}}+{c_2}{e^{\left({K1-K2}\right)t}}+\frac{V}{{\sqrt{{R^2}+{{\left({\frac{1}{{\omega C}}-\omega L}\right)}^2}}}}\cos\,\left[{\omega t +\theta+{{\tan}^{-1}}\left({\frac{1}{{\omega CR}}-\frac{{\omega L}}{R}} \right)} \right]\]
K2 becomes negative, when \[{\left( {{R \over {2L}}} \right)^2} < {1 \over {LC}}\]
Then the roots are complex conjugate, which gives an under damped response, Equation 16.11 becomes.
\[\left[ {D - \left( {{K_1} + j{K_2}} \right)} \right]\,\,\left[ {D - {K_1} - j{K_2}} \right]i=0\]
The solution for the above equation is
\[{i_c}=e{K_2}^t\left[ {{c_1}\,\cos \,{K_2}t + {c_2}\,\sin \,{K_2}t} \right]\]
Therefore, the complete solution is
\[i={i_c} + {i_p}\]
\[i=e{K_1}^t\left[ {{c_1}\,\cos \,{K_2}t + {c_2}\,\sin \,{K_2}t} \right]\]
\[+\frac{V}{{{{\sqrt{{R^2}+\left({\frac{1}{{\omega C}}-\omega L}\right)}}^2}}}\cos\,\left[{\omega t+\theta+{{\tan}^{-1}}\left({\frac{1}{{\omega CR}}-\frac{{\omega L}}{R}}\right)}\right]\]
K2 becomes zero, when \[{\left( {{R \over {2L}}} \right)^2}=1/LC\]
Then the roots are equal which gives critically damped response. Then, Eq.16.11 becomes (D-K1) (D-K1) I = 0
The complementary function for the above equation is
\[{i_c}={e^{K1t}}\left( {{c_1} + {c_2}t} \right)\]
Therefore, the complete solution is i=ic + ip
\[i = eK_1^t\left[ {{c_1}+{c_2}t}\right]+\frac{V}{{\sqrt{{R^2}+}{{\left({\frac{1}{{\omega C}}-\omega L}\right)}^2}}}\cos\,\left[{\omega t+\theta+{{\tan }^{-1}}\left({\frac{1}{{\omega CR}}-\frac{{\omega L}}{R}}\right)}\right]\]