9.3.Environmental Effects

Unit 9 : Thermal pollution

9.3.Environmental Effects
The primary effects of thermal pollution are direct thermal shock, changes in dissolved oxygen, and the redistribution of organisms in the local community. Because water can absorb thermal energy with only small changes in temperature, most aquatic organisms have developed enzyme systems that operate in only narrow ranges of temperature. These stenothermic organisms can be killed by sudden temperature changes that are beyond the tolerance limits of their metabolic systems. The cooling water discharges of power plants are designed to minimize heat effects on local fish communities. However, periodic heat treatments used to keep the cooling system clear of fouling organisms that clog the intake pipes can cause fish mortality. A heat treatment reverses the flow and increases the temperature of the discharge to kill the mussels and other fouling organisms in the intake pipes. Southern California Edison had developed a "fish-chase" procedure in which the water temperature of the heat treatment is increased gradually, instead of rapidly, to drive fish away from the intake pipes before the temperature reaches lethal levels. The fish chase procedure has significantly reduced fish kills related to heat treatments.

Small chronic changes in temperature can also adversely affect the reproductive systems of these organisms and also make them more susceptible to disease. Cold water contains more oxygen than hot water so increases in temperature also decrease the oxygen-carrying capacity of water. In addition, raising the water temperature increases the decomposition rate of organic matter in water, which also depletes dissolved oxygen. These decreases in the oxygen content of the water occur at the same time that the metabolic rates of the aquatic organisms, which are dependent on a sufficient oxygen supply, are rising because of the increasing temperature.
The composition and diversity of communities in the vicinity of cooling water discharges from power plants can be adversely affected by the direct mortality of organisms or movement of organisms away from unfavorable temperature or oxygen environments. A nuclear power-generating station on Nanwan Bay in Taiwan caused bleaching of corals in the vicinity of the discharge channel when the plant first began operation in 1988. Studies of the coral Acropora grandis in 1988 showed that the coral was bleached within two days of exposure to temperatures of 91.4°F. In 1990 samples of coral taken from the same area did not start bleaching until six days after exposure to the same temperature. It appears that the thermotolerance of these corals was enhanced by the production of heat-shock proteins that help to protect many organisms from potentially damaging changes in temperature. The populations of some species can also be enhanced by the presence of cooling water discharges. The only large population of sea turtles in California, for example, is found in the southern portion of San Diego Bay near the discharge of an electricity generating station
Last modified: Monday, 20 June 2011, 6:49 AM