Site pages
Current course
Participants
General
Module 1. Average and effective value of sinusoida...
Module 2. Independent and dependent sources, loop ...
Module 3. Node voltage and node equations (Nodal v...
Module 4. Network theorems Thevenin’ s, Norton’ s,...
Module 5. Reciprocity and Maximum power transfer
Module 6. Star- Delta conversion solution of DC ci...
Module 7. Sinusoidal steady state response of circ...
Module 8. Instantaneous and average power, power f...
Module 9. Concept and analysis of balanced polypha...
Module 10. Laplace transform method of finding ste...
Module 11. Series and parallel resonance
Module 12. Classification of filters
Module 13. Constant-k, m-derived, terminating half...
LESSON 24. Functional and operational Transforms
24.1. Functional Transforms
A functional transform is simply the Laplace transform of a special function of t. Because we are limiting our introduction to the unilateral, or one-sided, Laplace transform, we define all functions to be zero for t < 0.
(i) The unit step function \[f\left( t \right) = u\left( t \right)...................................................\left( {24.1} \right)\]
Where u(t) = 1 for t > 0
= 0 for t < 0
\[L\left[ {\delta \left( t \right)}\right]=\int\limits_0^\infty{f\left(t \right){e^{-st}}\,\,dt}\]
\[\,\int\limits_0^\infty{1e-st\,\,dt={{e-st}\over {-s}}} l\nolimits_0^\infty={1\over s}\]
\[L\left[ {u\left( t \right)} \right]={1 \over s}...................................................\left( {24.2} \right)\]
(ii) Exponential function \[f\left( t \right)={e^{ - at}}\]
\[L\left({{e^{-at}}}\right)=\int_0^\infty{e - at.{e^{-st}}\,dt}\]
\[=\int_0^\infty{{e^{-\left({s+a}\right)t}}={{-1}\over{s+a}}\left[ {{e^{-\left({s + a}\right)t}}}\right]_0^\infty={1\over {s + a}}}\]
\[L\left[{{e^{-at}}}\right]={1\over{s + a}}...................................................\left( {24.3} \right)\]
(iii) The cosine function : cos wt \[..................................................\left( {24.4} \right)\]
\[L\left( {\cos\,\omega t} \right)=\int\limits_0^\infty{\cos \,\omega t\,\,{e^{-st}}dt}\]
\[=\int\limits_0^\infty{{e^{-st}}\left[{{{{e^{j\omega t}}+{e^{-j\omega t}}}\over 2}}\right]}\,dt\]
\[={1 \over 2}\left[ {\int\limits_0^\infty{{e^{-\left({s-j\omega }\right)t}}dt+\int\limits_0^\infty{{e^{-\left({s + j\omega}\right)t}}dt}}}\right]\]
\[={1 \over 2}\left[{{{{e^{-\left({s-j\omega t}\right)t}}}\over{s-j\omega}}}\right]_0^\infty\,\, + \,{1\over 2}\left[{{{{e^{-\left({s+j\omega t} \right)t}}} \over {s + j\omega }}} \right]_0^\infty\]
\[={1 \over 2}\left[ {{1 \over {s - j\omega }}+{1\over {s + j\omega }}}\right]={s \over {{s^2} + {\omega ^2}}}\]
\[L\left( {\cos \,\,\omega t} \right)={s \over {{s^2} + {\omega ^2}}}...................................................\left( {24.5} \right)\]
(iv) The sine function : sin wt \[...................................................\left( {24.6} \right)\]
\[L\left( {\sin \,\omega t} \right)=\int\limits_0^\infty{\sin \,\omega t\,\,{e^{ - st}}dt}\]
\[=\int\limits_0^\infty{{e^{-st}}\left[ {{{{e^{j\omega t}}-{e^{-j\omega t}}}\over {2j}}} \right]} \,dt\]
\[={1 \over {2j}}\left[ {\int\limits_0^\infty{{e^{-\left({s-j\omega }\right)t}}dt-\int\limits_0^\infty{{e^{-\left({s+j\omega}\right)t}}dt}}}\right]\]
\[={1 \over {2j}}\left\{ {\left[ {{{{e^{ - \left( {s - j\omega t} \right)t}}} \over {s - j\omega }}} \right]_0^\infty \,\, + \left[ {{{{e^{ - \left( {s + j\omega t} \right)t}}} \over {s + j\omega }}} \right]_0^\infty } \right\}\]
\[={1\over {2j}}\left[ {{1\over {s - j\omega }} + {1 \over {s + j\omega }}} \right]={\omega\over {{s^2} + {\omega ^2}}}\]
\[L\left( {\sin \,\,\omega t} \right)={\omega\over {{s^2} + {\omega^2}}}...................................................\left( {24.7} \right)\]
(v) The function t”, where n is a positive integer
\[L\left( {t} \right)=\int\limits_0^\infty{t.{e^{ - st}}dt} ...................................................\left( {24.8} \right)\]
\[=\left[ {{{t{e^{-st}}} \over {-s}}}\right]_0^\infty-\int\limits_0^\infty{{{{e^{-st}}} \over {-s}}n{t^{n - 1}}dt}\]
\[={n \over s}\int\limits_0^\infty{{e^{-st}}\,t{n^{-1}}\,dt}\]
\[={n \over s}L\left( {{t^{n - 1}}} \right)...................................................\left( {24.9} \right)\]
Similarly \[L\left( {{t^{n - 1}}} \right)={{n - 1} \over s}L\left( {{t^{n - 2}}} \right)\]
By taking Laplace transformations of tn-2, tn-3 … and substituting in the above equation, we get
\[L\left( {t} \right)={n \over s}{{n - 1} \over s}{{n - 2} \over s}......{2 \over s}{1 \over s}L\left( {{t^{n - m}}} \right)\]
\[L\left( t \right)={1 \over {{s^2}}}...................................................\left( {24.10} \right)\]
(vi) The hyperbolic sine and cosine function
\[L\left( {\cosh \,\,at} \right)\,=\,\int\limits_0^\infty{\cosh \,at\,{e^{ - st}}dt} ...................................................\left( {24.11} \right)\]
\[=\int\limits_0^\infty{\left[ {{{{e^{at}}+{e^{-at}}}\over 2}}\right]}{e^{-st}}\,\,dt\]
\[={1 \over 2}\int\limits_0^\infty{{e^{-\left({s - a} \right)t}}\,dt + {1 \over 2}\int\limits_0^\infty{{e^{-\left({s + a} \right)t\,}}dt} }\]
\[={1 \over 2}{1 \over {s - a}} + {1 \over 2}{1 \over {s + a}}={s \over {{s^2} - {a^2}}}...................................................\left( {24.12} \right)\]
Similarly,
\[L\left( {\sinh \,at} \right)=\int\limits_0^\infty{\sinh \,\left( {at} \right){e^{ - st\,}}\,dt} ...................................................\left( {24.13} \right)\]
\[=\int\limits_0^\infty{\left[ {{{{e^{at}} - {e^{ - at}}} \over 2}} \right]} {e^{ - st}}\,\,dt\]
\[={1 \over 2}\int\limits_0^\infty{{e^{ - \left( {s - a} \right)t}}\,dt + {1 \over 2}\int\limits_0^\infty{{e^{ - \left( {s + a} \right)t\,}}dt} }\]
\[={1 \over 2}{1 \over {s - a}} + {1 \over 2}{1 \over {s + a}}={s \over {{s^2} - {a^2}}}...................................................\left( {24.14} \right)\]
Table 24.1 List of Laplace Transform Pairs
Type |
\[f\left( t \right)\] |
F(s) |
Impulse |
δ(t |
1 |
Step |
U(t) |
\[{1 \over s}\] |
ramp |
t |
\[{1 \over {{s^2}}}\] |
exponential |
e-at |
\[{1 \over {s + a}}\] |
sine |
sin ωt |
\[{\omega\over {{s^2} + {\omega^2}}}\] |
cosine |
cos ωt |
\[{s \over {{s^2} + {\omega^2}}}\] |
Hyperbolic sine |
sinh at |
\[{a \over {{s^2} - {a^2}}}\] |
Hyperbolic cosine |
cosh at |
\[{s \over {{s^2} - {a^2}}}\] |
damped ramp |
te-at |
\[{1 \over {\left( {s + a} \right)}}\] |
Damped sine |
e-at sin ωt |
\[{\omega\over{{{\left({s + a} \right)}^2} + {\omega^2}}}\] |
Damped cosine |
e-at cos ωt |
\[{{s + a} \over {{{\left( {s + a} \right)}^2} + {\omega ^2}}}\] |
24.2. Operational Transforms
Operational transforms indicate how mathematical operations performed on either and F(s) are converted into the opposite domain. The operations of primary interest are
(1) Multiplication by a constant
(2) Addition (subtraction)
(3) Differentiation
(4) Integration
(5) Translations in the time domain
(6) Translation in the frequency domain and
(7) Scale charging
Multiplication by Constant
From the defining integral, if
\[L\left[ {f\left( t \right)} \right]=F\left( s \right)\]
then \[L\left\{ {K\,f\left( t \right)} \right\}=K\,F\left( s \right)...................................................\left( {24.15} \right)\]
Consider a function \[f\left( t \right)\] multiplied by a constant K.
The Laplace transform of this function is given by
\[L\left[ {K\,f\left( t \right)} \right]=\int\limits_0^\infty{Kf\left( {t\,{e^{ - st}}\,dt} \right)} ...................................................\left( {24.16} \right)\]
\[=K\int\limits_0^\infty{f\left( t \right)\,{e^{ - st}}\,dt=LF\left( s \right)} ...................................................\left( {24.17} \right)\]
This property is called linearly property.
Addition (Subtraction)
Addition (subtraction) in the time domain translates into addition (subtraction) in the frequency domain.
This if
\[{f_1}\left( t \right)\buildrel L \over \longleftrightarrow {F_1}\left( s \right)\,and\]
\[{f_2}\left( t \right)\buildrel L \over \longleftrightarrow {F_2}\left( s \right),\,then\]
\[L\left[ {{f_1}\left( t \right) \pm {f_2}\left( t \right)} \right]={F_1}\left( s \right) \pm {F_2}\left( s \right)...................................................\left( {24.18} \right)\]
Consider two functions \[{f_1}\left( t \right)\] and \[{f_2}\left( t \right)\] . The Laplace transform of the sum or difference of these two functions is given by
\[L\left\{ {{f_1}\left( t \right) \pm {f_2}\left( t \right)} \right\}=\int\limits_0^\infty{\left\{ {{f_1}\left( t \right) \pm {f_2}\left( t \right)} \right\}{e^{ - st}}dt}\]
\[=\int\limits_0^\infty{{f_1}\left( t \right){e^{ - st}}dt \pm \int\limits_0^\infty{{f_2}\left( t \right){e^{ - st}}dt} }\]
\[={F_1}\left( s \right) \pm {F_2}\left( s \right)\]
\[L\left\{ {{f_1}\left( t \right) \pm {f_2}\left( t \right)} \right\}={F_1}\left( s \right) \pm {F_2}\left( s \right)...................................................\left( {24.19} \right)\]
The Laplace transform of the sum of the two or more functions is equal to the sum of transforms of the individual function. This is called superposition property, if we can use of linearity and superposition properties jointly, we have
\[L\left[ {{K_1}{f_1}(t) + {K_2}{f_2}(1)} \right]={K_1}L\left[ {{f_1}(t} \right] + {K_2}L\left[ {{F_2}(t} \right]\]
\[={K_1}{F_1}(s) + {K_2}{f_2}(s)...................................................\left( {24.20} \right)\]
Integration
If a function \[f\left( t \right)\] is continuous, then the Laplace transform of its integral \[\int {f\left( t \right)} \,\,dt\] is given by
\[L\left[ {\int\limits_0^t {f\left( t \right)} \,dt} \right]={1 \over s}F\left( s \right)...................................................\left( {24.21} \right)\]
By definition
\[L\left[ {\int\limits_0^t {f\left( t \right)} \,dt}\right]=\int\limits_0^\infty{}\left[{\int\limits_0^t {f\left( t \right)} \,dt} \right]{e^{ - st}}\,dt...................................................\left( {24.22} \right)\]
Integrating by parts, we get
\[= \left[ {{{{e^{ - st}}} \over {-s}}\int\limits_0^t {f\left( t \right)dt} } \right]_0^\infty+{1 \over s}\int\limits_0^\infty{{e^{ - st}}f} \left( t \right)dt...................................................\left( {24.23} \right)\]
Since, the first term is zero, we have
\[L\left[ {\int\limits_0^t {f\left( t \right)dt} } \right]={1 \over s}L\left[ {f\left( t \right)} \right]={{F\left( s \right)} \over s}...................................................\left( {24.24} \right)\]
Differentiation of Transforms
If the Laplace transform of the function exists, then the derivative of the corresponding transform with respect to s in the frequency domain is equal to its multiplication by t in the time domain.
i.e. \[L\left[ {tf\left( t \right)} \right]={{ - d} \over {ds}}F\left( s \right)...................................................\left( {24.25} \right)\]
By definition
\[{d \over {ds}}F\left( s \right)={d \over {ds}}\int\limits_0^\infty{f\left( t \right){e^{ - st}}dt} ...................................................\left( {24.26} \right)\]
Since s and t are independent variables, and the limits 0, ∞ are constants not depending on s, we can differentiate partially with respect to s within the integration and then integrate the function obtained with respect to t.
\[{d \over {ds}}F\left( s \right)= d \over {ds}}\int\limits_0^\infty{f\left( t \right){e^{ - st}}dt}\]
\[=\int\limits_0^\infty{f\left( t \right)\left[ { - t{e^{ - st}}} \right]} \,dt\]
\[=-\int\limits_0^\infty{\left\{ {tf\left( t \right)} \right\}} {e^{ - st}}dt=-L\left[ {tf\left( t \right)} \right]\]
Hence \[L\left[ {tf\left( t \right)} \right]={{ - d} \over {ds}}F\left( s \right)...................................................\left( {24.27} \right)\]
Integration of Transforms
If the Laplace transform of the function \[f\left( t \right)\] exists, then the integral of corresponding transform with respect to s in the complex frequency domain is equal to its division by t in the time domain.
\[i.e.\,\,\,\,\,\,L\left[ {{{f\left( t \right)} \over t}} \right]=\int\limits_s^\infty{F\left( s \right)ds} ...................................................\left( {24.28} \right)\]
i.e. \[f\left( t \right) \leftrightarrow F\left( s \right)\]
\[F\left( s \right)=L\left[{f\left({}\right)}\right]=\int\limits_0^\infty{f\left( t \right){e^{-st}}\,dt} ...................................................\left({24.29} \right)\]
Integrating both sides from s to ∞
\[\int\limits_s^\infty{F\left(s\right)\,ds=\int\limits_s^\infty{}\left[{\int\limits_0^\infty{f\left(t\right){e^{-st}}dt}}\right]} ds...................................................\left( {24.30} \right)\]
By changing the order of integration, we get
\[=\int\limits_0^\infty{f\left( t \right)} \left[ {\int\limits_s^\infty{{e^{ - st}}ds} } \right]dt..................................................\left( {24.31} \right)\]
\[=\int\limits_0^\infty{f\left( t \right)} \left( {{{{e^{ - st}}} \over t}} \right)dt\]
\[=\int\limits_{0t}^\infty{}\left[ {{{f\left( t \right)} \over t}} \right]\,\,{e^{ - st}}\,dt = L\left[ {{{f\left( t \right)} \over t}} \right]..................................................\left( {24.32} \right)\]
\[\int\limits_0^\infty{F\left( s \right)} ds = L\left[ {{{f\left( t \right)} \over t}} \right]..................................................\left( {24.33} \right)\]
Translation in the time Domain
If the function \[f\left( t \right)\] has the transform F(s), then the Laplace transform of \[f\left( {t - a} \right)\,\,u\left( {t - a} \right)\] is e-as F(s). By definition
\[L\left[ {f\left( {t - a} \right)\,u\left( {t - a} \right)} \right]=\int\limits_0^\infty{\left[ {f\left( {t - a} \right)\,u\left( {t - a} \right)} \right]\,{e^{ - st}}\,\,dt} ..................................................\left( {24.34} \right)\]
Since \[f\left({t - a} \right)\,u\left({t - a}\right)=0 &for\,\,t < a\]
\[=f\left( {t - a} \right)\,\,\,\,\,\,for\,\,t > a\]
\[L\left[ {f\left( {t - a} \right)\,u\left( {t - a} \right)} \right]=\int\limits_0^\infty{f\left( {t - a} \right)\,{e^{ - st}}\,\,dt} ..................................................\left( {24.35} \right)\]
\[Put\,\,t - a\,=\,\tau\,then\,\tau+a=t\]
\[dt=d\tau\]
Therefore, the above becomes
\[L\left[ {f\left( {t - a}\right)\,u\left({t - a} \right)}\right]\int\limits_0^\infty{f\left( t \right){e^{-s\left( {\tau+a} \right)}}} d\tau ..................................................\left( {24.36} \right)\]
\[={e^{-as}}\int\limits_0^\infty{f\left(\tau\right){e^{-ST}}d\tau=} {e^{-as}}F\left(s \right)..................................................\left( {24.37} \right)\]
\[L\left[ {f\left( {t - a} \right)\,\,u\left( {t - a} \right)} \right]={e^{ - as}}F(s)..................................................\left( {24.38} \right)\]
Translation in the time domain corresponds to multiplication by an exponential in the frequency domain.
Translation in the Frequency Domain
If the function \[f\left( t \right)\] has the transform F(s), then Laplace transform of \[{e^{ - at}}f(t)is\,\,F(s + a)\]
By definition, \[F\left( s \right)=\int\limits_0^\infty{f\left( t \right)} {e^{ - st}}dt..................................................\left( {24.39} \right)\]
and therefore, \[F\left( {s + a} \right)=\int\limits_0^\infty{f\left( t \right)} {e^{ - (s + a)}}dt..................................................\left( {24.40} \right)\]
\[=\int\limits_0^\infty{{e^{ - at}}f\left( t \right)} {e^{ - st}}dt = L\left[ {{e^{ - at}}f\left( t \right)} \right]..................................................\left( {24.41} \right)\]
\[F(s + a)=L\left[ {{e^{ - at}}f(t)} \right]..................................................\left( {24.42} \right)\]
Similarly, we have
\[L\left[ {{e^{at}}f(t)} \right]=F(s - a)..................................................\left( {24.43} \right)\]
Translation in the frequency domain corresponds to multiplication by an exponential in the time domain.
Scale Changing
The scale change property gives the relationship between and F(s) when the time variable is multiplied by a positive constant.
\[L\left\{ {f\left( {at} \right)} \right\}={1 \over a}F\left( {{s \over a}} \right),a > 0..................................................\left( {24.44} \right)\]
By definition
\[L\left[ {f\left( {at} \right)} \right]=\int\limits_0^\infty{f\left( {at} \right)} {e^{ - st}}dt..................................................\left( {24.45} \right)\]
Put \[at=\tau\]
\[dt={1 \over a}d\tau\]
\[L\left[ {f\left( {at} \right)} \right]=\int\limits_0^\infty{f\left(\tau\right)} {e^{{s \over a}\tau}}.{1 \over a}d\tau\]
\[={1 \over a}\int\limits_0^\infty{f\left(\tau\right){e^{{s \over a}\tau}}} d\tau\]
\[={1 \over a}F\left( {{s \over a}} \right)..................................................\left( {24.46} \right)\]