Definition and introduction of photosynthesis

BIOCHEMISTRY 3(2+1)
Lesson 26 : Biosynthesis Pathways- Photosynthesis,Nitrogen Fixation, Carbon cycle

Definition and introduction of photosynthesis

Photosynthesis[?] is a process that converts carbon dioxide into organic compounds, especially sugars, using the energy from sunlight. Photosynthesis occurs in plants, algae, and many species of Bacteria, but not in Archaea. Photosynthetic organisms are called photoautotrophs, since it allows them to create their own food. In plants, algae and cyanobacteria photosynthesis uses carbon dioxide and water, releasing oxygen as a waste product. Photosynthesis is vital for life on Earth. As well as maintaining the normal level of oxygen in the atmosphere, nearly all life either depends on it directly as a source of energy, or indirectly as the ultimate source of the energy in their food

The amount of energy trapped by photosynthesis is immense, approximately 100 terawatts: which is about six times larger than the power consumption of human civilization. As well as energy, photosynthesis is also the source of the carbon in all the organic compounds within organisms' bodies

The process always begins when energy from light is absorbed by proteins called photosynthetic reaction centers that contain chlorophylls. In plants, these proteins are held inside organelles called chloroplasts, while in bacteria they are embedded in the plasma membrane. Some of the light energy gathered by chlorophylls is stored in the form of adenosine triphosphate (ATP). The rest of the energy is used to remove electrons from a substance such as water. These electrons are then used in the reactions that turn carbon dioxide into organic compounds.

Many photosynthetic organisms have adaptations that concentrate or store carbon dioxide. This helps reduce a wasteful process called photorespiration that can consume part of the sugar produced during photosynthesis

Formula for the type of photosynthesis that occurs in plants.

Carbon dioxide is converted into sugars in a process called carbon fixation. Carbon fixation is a redox reaction, so photosynthesis needs to supply both a source of energy to drive this process, and also the electrons needed to convert carbon dioxide into carbohydrate, which is a reduction reaction. In general, photosynthesis is the opposite of cellular respiration, where glucose and other compounds are oxidized to produce carbon dioxide, water, and release chemical energy. However, the two processes take place through a different sequence of chemical reactions and in different cellular compartments.

The general equation for photosynthesis is therefore:

2n CO2 + 2n H2O + photons ? 2(CH2O)n + n O2 + 2n A

carbon dioxide + electron donor + light energy ? carbohydrate + oxygen + oxidized electron donor Since water is used as the electron donor in oxygenic photosynthesis, the equation for this process is:

2n CO2 + 2n H2O + photons ? 2(CH2O)n + 2n O2

Carbon dioxide + water + light energy ? carbohydrate + oxygen

Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the energy-storage molecules ATP and NADPH. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.

Most organisms that utilize photosynthesis to produce oxygen use visible light, at least three organisms use infrared radiation

In the Light-independent or dark reactions the enzyme RuBisCO captures CO2 from the atmosphere and in a process that requires the newly formed NADPH, called the Calvin-Benson Cycle, releases three-carbon sugars, which are later combined to form sucrose and starch. The overall equation for the light-independent reactions in green plants is

3 CO2 + 9 ATP + 6 NADPH + 6 H+ ? C3H6O3-phosphate + 9 ADP + 8 Pi + 6 NADP+ + 3 H2O

To be more specific, carbon fixation produces an intermediate product, which is then converted to the final carbohydrate products. The carbon skeletons produced by photosynthesis are then used variously to form other organic compounds, such as the building material cellulose, as precursors for lipid and amino acid biosynthesis, or as a fuel in cellular respiration. The latter occurs not only in plants but also in animals when the energy from plants gets passed through a food chain.

The fixation or reduction of carbon dioxide is a process in which carbon dioxide combines with a five-carbon sugar, ribulose 1,5-bisphosphate (RuBP), to yield two molecules of a three-carbon compound, glycerate 3-phosphate (GP), also known as 3-phosphoglycerate (PGA). GP, in the presence of ATP and NADPH from the light-dependent stages, is reduced to glyceraldehyde 3-phosphate (G3P). This product is also referred to as 3-phosphoglyceraldehyde (PGAL) or even as triose phosphate. Triose is a 3-carbon sugar (see carbohydrates). Most (5 out of 6 molecules) of the G3P produced is used to regenerate RuBP so the process can continue. The 1 out of 6 molecules of the triose phosphates not "recycled" often condense to form hexose phosphates, which ultimately yield sucrose, starch and cellulose. The sugars produced during carbon metabolism yield carbon skeletons that can be used for other metabolic reactions like the production of amino acids and lipids.

Index
Home
Next
Last modified: Tuesday, 24 January 2012, 5:48 AM