Week Name Description
Page Theory
Page Practicals
Page Course outline
26 February - 4 March Page 1.1.1 Population
Page 1.1.2. Dynamics
Page 1.1.3. Population dynamics
Page 1.1.4. Stock assessment
File introduction
Page 1.2.1. Concept of population
Page 1.2.2. Concept of stock
File Concept of population and unit stock
Page 1.3.1. Mixed stock
Page 1.3.2. Limitations in the assessment of tropical fish stocks
File Characteristics of mixed stock
Page 1.4.1. Aims of stock assessment
Page 1.4.2. Stock assessment
Page 1.4.3. Fish abundance
Page 1.4.4. Surplus production
Page 1.4.5. production rate
Page 1.4.6. Production functions
Page 1.4.7. Maximum Sustainable Yield (MSY)
File Principles of stock assessment
Page 1.5.1. Fishery-dependent data
Page 1.5.2. Fishery-independent data
Page 1.5.3. Biological data
Page 1.5.4. Fisheries data
Page 1.5.5. Basic elements for the description of a fishery
Page 1.5.5.1. For Analytical model
Page 1.5.5.2. For Surplus production model
Page 1.5.5.3. For swept area method
File Data requirement of stock assessment
Page 1.6.1. Spatial and temporal variations
Page 1.6.2. Starategies to be followed
File Biological structure of fisheries resources in space and time
Page 1.7.1. Indicators
Page 1.7.2. Economic and Social Indicators
Page 1.7.3. Uses of indicators
Page 1.7.4. Biological indicators
Page 1.7.5. Inclusion criteria
Page 1.7.6. Fisheries Indicators and data sources
Page 1.7.7. Classification of some indicators following the PSR framework
File Indicators of dynamics in fishery resource
Page 1.8.1. Sample
Page 1.8.2. Sampling fish
Page 1.8.3. Types of sampling
File Sampling techniques
5 March - 11 March Page 2.1.1. Introduction
Page 2.1.2. Laws of population structure
Page 2.1.3. Laws of growth
Page 2.1.4. Fish growth in tropical and temperate waters
Page 2.1.5. Biological features of population
File Population age structure
Page 2.2.1. Introduction
Page 2.2.2 Life span of a Fish
Page 2.2.3 Construction of life table
Page 2.2.4 Mathematical models
Page 2.2.4.1 Density independent model for organisms with discrete breeding season
Page 2.2.4.2 Density dependent model for population with discrete breeding season
Page 2.2.4.3 Density independent model for populations which breed continuously
Page 2.2.4.4 Density dependent model for populations which breeds continuously
Page 2.2.5 Virtual population analysis
Page 2.2.6 Cohort Dynamics
File Theory of life tables
Page 2.3.1 Introduction
Page 2.3.2. Petersen’s method
Page 2.3.3. Modal class progression analysis
Page 2.3.4. Integrated method
File Age determination-integrated method
12 March - 18 March Page 3.1.1. Introduction
Page 3.1.2. Growth
Page 3.1.3. Growth parameters
Page 3.1.3.1. Length infinity or Asymptotic length
Page 3.1.3.2. Growth coefficient or curvature parameter (K)
Page 3.1.3.3. Initial condition parameter / Arbitrary origin of growth (t0)
Page 3.1.3.4. L max
Page 3.1.3.5. Growth rate
Page 3.1.3.6. von Bertalanffy’s growth equation
Page 3.2.1. Introduction
Page 3.2.2. Growth parameters and its application
Page 3.2.3. Data needed to estimate growth parameters
Page 3.2.4. Methods / equations used to study growth parameters
Page 3.2.4.1. Gulland and Holt Plot
Page 3.2.4.2. Ford – Walford plot & Chapman’s method
Page 3.2.4.3. Chapman’s method
Page 3.2.4.4. Bagenels’ least square method
Page 3.2.5. Estimation of growth parameters for Elasmobranches
Page 3.2.6. Estimation of growth parameters for crustaceans
Page 3.2.7. Growth Co-efficient
File Determination of growth parameters
19 March - 25 March Page 4.1.1. Introduction
Page 4.1.2. Types of Mortality
Page 4.1.3. Application of mortality parameters
Page 4.1.4. Estimation of total instantaneous mortality (Z)
Page 4.1.4.1. Estimation of Z by exponential equation
Page 4.1.4.2. Estimation of ‘Z’ by age composition data
Page 4.1.4.3. Estimation of Z from CPUE
Page 4.1.4.4. Estimation of Z using LFD and selection parameters
Page 4.1.4.4.1. Estimation of Z by means of a catch curve
Page 4.1.4.4.2. Estimation of Z by growth and selection parameters (Beverton and Holt equation)
Page 4.1.4.4.3. Powell – Wetherall method
Page 4.2.1. Introduction
Page 4.2.2. Application
Page 4.2.3. Estimation of ‘M’
Page 4.2.3.1. Pauly’s empirical formula
Page 4.2.3.2. Correlation of ‘M’ with longevity of fishes (Pauly’s method)
Page 4.2.3.3. Rikhter and Efanov’s formula
Page 4.3.1. Introduction
Page 4.3.2. Estimation of ‘F’
Page 4.4.1. Exploitation ratio
Page 4.4.2. Exploitation rate
File Exploitation rate and exploitation ratio
26 March - 1 April Page 5.1.1. Introduction
Page 5.1.2. Selection Process and Selectivity
Page 5.1.3. Bell shaped selection curve
Page 5.1.4. Sigmoid shaped selection curve
Page 5.1.5. Gill Net selectivity
Page 5.1.6. Factors influencing the selectivity to Gill nets
Page 5.1.7. General information needed
Page 5.2.1. Introduction
Page 5.2.2. Selectivity
Page 5.2.3. Factors affecting the selectivity of trawls
Page 5.2.4. Methods of measuring the selectivity of trawls
2 April - 8 April Page 6.1.1. Introduction
Page 6.1.2. Objectives
Page 6.1.3. Surplus production model
Page 6.1.3.1. Schaefer model
Page 6.1.3.2. Fox model
Page 6.1.4. Procedure
Page 6.1.5. Uses of the surplus production model
Page 6.2.1. Introduction
Page 6.2.2. Concept of MSY
Page 6.2.3. Merits and demerits of MSY
Page 6.2.4. FMSY & FMAX
Page 6.2.5. Limitations of MSY approach
Page 6.2.6. Maximum Economic yield (MEY)
File Maximum sustainable yield & maximum economic yield
Page 6.3.1. Introduction
Page 6.3.2. Swept area method
Page 6.3.3. Biomass Estimation
File Swept area method
Page 6.4.1. Introduction
Page 6.4.2. Methods of estimation of potential yields
Page 6.4.2.1. Gulland Equation
Page 6.4.2.2. Ricker equation
Page 6.4.2.3. Cadima’s formula
Page 6.4.2.4. Schaefer and Fox model
File Estimation of potential yields in (more or less) virgin stocks
9 April - 15 April Page 7.1.1. Introduction
Page 7.1.2. Yield / recruit model of Beverton and Holt
Page 7.1.3. Assumption to be taken for using Analytic model
Page 7.1.4. Derivation of the model
Page 7.1.5. Input data needed
Page 7.1.6. Equation
Page 7.1.7. Calculation procedure
File Beverton and Holt's yield per recruit model
Page 7.2.1. Introduction
Page 7.2.2. Equation
File Beverton and Holt's relative yield per recruit model
Page 7.3.1. Introduction
Page 7.3.2. Mean age and size in the yield
File Biomass per recruit model
Page 7.4.1. Yield curves
File Yield curves
16 April - 22 April Page 8.1.1. Introduction
Page 8.1.2. Principles
Page 8.1.3. Parameters to be entered for all groups
File Ecopath
Page 8.2.1. Introduction
Page 8.2.2. Applications
Page 8.2.3. Collection of Data
File Monte carlo simulation model
23 April - 29 April Page 6.5.1 Introduction
Page 6.5.2 Recruitment
Page 6.5.3 Ricker bell shaped curve
Page 6.5.4. Beverton and Holt model
Page 6.5.5. Cushing model
Page 6.5.6 Relative response model
File Models used for stock recruits and parent stock
30 April - 6 May Page 9. 1.1 Introduction
Page 9.1.2 Growth overfishing
Page 9.1.3 Recruitment overfishing
Page 9.1.4 Ecosystem overfishing
Page 10.1.6.Regulary measures
Page 10.1.6. Eumetric fishing
File Overfishing
Page 9.2.1 Introduction
Page 9.2.2 Fishing effort
Page 9.2.3 Catchability coefficient
Page 9.2.4 Standardisation of fishing effort
File CPUE
Page 9.3.1 Introduction
Page 9.3.2 Open accent catch
Page 10.4.1. Introduction
Page 10.4.2. Origins of public policy
Page 10.4.3. Principles of Public Action
Page 10.4.4. Current regulatory objectives
Page 10.4.4.1. Conservation
Page 10.4.4.2. Allocation of fishing rights
Page 10.4.4.3. Orderly fishing
Page 10.4.4.4. Prevention of waste
Page 10.4.4.5. Protection of public health
Page 10.4.5. Regulatory decisions
Page 10.4.6. Regulation of a large oceanic fishery
Page 10.4.7. Methods of regulation
Page 10.4.8. International Plans of Actions (IPOAs)
Page 10.4.9. Bycatch reduction technologies
Page 10.4.10. Pointers from CCRF and IPOAs for responsible fishing
Page 10.5.1. Introduction
Page 10.5.2. Excerpts Pertaining to Fisheries from the law of the Sea
Page 10.5.3. Conservation of the living resources
Page 10.5.4. Utilization of the living resources
File Implementation of the new law of the sea
7 May - 13 May Page Introduction
Page Objectives
Page Collection and processing of Length Frequency Data
Page Integrated method of Pauly
Page Tenets of the Integrated method of Pauly
Page Points to be noted while drawing curves
14 May - 20 May Page Introduction
Page Objectives
Page Procedure
Page Problem
Page Length and weight converted to VBGF growth curves
Page Calculation
Page Results
21 May - 27 May Page Introduction
Page Objectives
Page Procedure
Page Problem : 1
Page Solution
Page Problem : 2
Page Solution
Page Results
28 May - 3 June Page Introduction
Page Objectives
Page Procedure
Page Problem
Page Results
4 June - 10 June Page Introduction
Page Objectives
Page Procedure
Page Problem
11 June - 17 June Page Objectives
Page Problem
Page Solution
18 June - 24 June Page Introduction
Page Problem
Page Solution
Page Result
25 June - 1 July Page Introduction
Page Problem
Page Result
2 July - 8 July Page Objectives
Page Problem
9 July - 15 July Page Introduction
Page Problem 1
Page Problem 2
Page Solution for purse seine
Page Solution for both trawl net and purse seine
Page Solution for both trawl net and purse seine
16 July - 22 July Page Introduction
Page Problem
Page Schaefer model
Page Fox model
23 July - 29 July Page Introduction
Page Problem
Page Conclusion
30 July - 5 August Page Introduction
Page Procedure
6 August - 12 August Page Introduction
Page Table 1
Page Problem
13 August - 19 August Page Swept Area Method
Page Solution
20 August - 26 August Page Computer Packages for Stock Assessment Studies