References

Reference

1. Aleev, Y.G., Function and Gross Morphology in Fish. Keter Press, Jerusalem, 1969.

2. Altringham, J.D., Wardle, C.S., and Smith, C.I., Myotomal muscle function at different locations in the body of a swimming fish. J. Exp. Biol. 182, 191 – 206, 1993.

3. Arnold, G.P., Webb, P.W., and Holford, B. H., The role of the pectoral fins in station – holding of atlantic salmon parr (Salmo salar L.). J. Exp. Biol. 156, 625 – 629, 1991.

4. Beamish, F. W. H., Swimming capacity, in Fish Physiology, Hoar, W. S. and Randall, D. J., (Eds.), Academic Press, New York, 101-187, 1978.

5. Bennett, A.F. and Lenski, R.E., Experimental evolution and its role in evolutionary physiology. Amer, Zool. 39, 346-362, 1999.

6. Block, B. and Stevens, E. D., (Eds), Tuna: physiology, ecology, and evolution. Academic Press, San Diego, 2001.

7. Bone, Q., Locomotor muscle, in Fish Physiology. Vol. VII. Locomotion, Hoar, W. S. and Randall, D. J., (Eds.), Academic Press, New York, 361-424, 1978.

8. Buss, R. R. and Drapeau. P., Physiological properties of zebrafish embryonic red and white muscle fibers during early development. J. Neurophysiol. 84, 1545-1557, 2000.

9. Castri-Santos, T. and Haro, A., Quantifying migratory delay; a new application of survival analysis methods. Can. J. Fish. Aquat. Sci. 60, 986-996, 2003.

10. Childress, S., Mechanics of Flying and Swimming. Cambridge Univ. Press, Cambridge, 1981.

11. Coughlin, D. J., Valdes, L., and Rome, L., Muslce length changes during swimming in scup: sonomicrometry verifies the anatomical high-speed cine technique. J. Exp. Biol. 199, 459-463, 1995.

12. Czuwala, P. J., Blanchette, C., Varga, S., Root, R.G., and Long, J. H., A mechanical model for the rapid body flexures of fast-starting fish, in International Symposium of Unmanned Untethered Submersible Technology, Autonomous Underwater Systems Institute, Lee, N.H., 415-426, 1999.

13. Donley, J., Sepulveda, C., Konstantinidis, P., Gemballa, S., and Shadwick, R., Convergent evolution in mechanical design of lamnid sharks and tunas. Nature 429, 61-65, 2004.

14. Lauder, G.V., Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Amer. Zool. 40, 101-122, 2000.

15. Webb, P. W., The biology of fish swimming, in Mechanics and Physiology of Animal Swimming, Maddock, L., Bone, Q., and Rayner, J. M. V., (Eds.), Cambridge Univ. Press, Cambridge, 45-62, 1994.

16. Westneat, M. and Wainwright, S.A., Mechanical design for swimming: muscle, tendon, and bone, inTuna: Physiology, Eology, and Evolution, Block, B. and Stevens, E.D., (Eds.), Academic Press, San Diego, 271-311, 2001.

17. Westneat, M., Thorsen, D. H., Walker, J. A., and Hale, M., Structure, function, and neural control of pectoral fins in fishes. IEEE J. Oceanic Eng. 29, 674-683, 2004.

18. Buddington, R. K. and Diamond, J. M., Pyloric ceca of fish: a “new” absorptive organ, Am. J. Physiol. 252, G65-G76, 1987.

19. Buddington, R. K., Krogdahl, A., and Bakke-McKellep, A. M., The intestines of carnivorous fish: structure and functions and the relations with diet, Acta Physiol. Scand. 161 (Suppl. 638), 67-80, 1997.

20. Clements, K. D., Herbivorous fishes, in The Living Reef. The Ecology of New Zealand’s Rocky Reefs, Andrew, N. and Francis, M., Ed., Craig Potton Publishing, Nelson, 2003, pp. 128-135.

21. Das, K. M. and Tripathi, S. D., Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.), Aquaculture 92, 21-32, 1991.

22. Horn, M. H., Biology of marine herbivorous fishes, Oceanogr. Mar. Biol. Annu. Rev. 27, 167-272, 1989.

23. Horn, M. H., Feeding and digestion, in The Physiology of Fishes, 2nd Edition, Evans, D. H., Ed., CRC Press, Boca Raton, FL, 1998, pp. 43-63.

24. Horn, M. H. and Messer, K. S., Fish guts as chemical reactors: a model of the alimentary canals of marine herbivorous fishes, Mar, Biol. 113, 527-535, 1992.

25. Wilson, R. P., Amino acids and proteins, in Fish Nutrition, 3rd Edition, Halver, J. E. and Hardy, R. W., Eds. Academic Press, Amsterdam, 2002, pp. 143-179.

26. Armbruster, J. W., Modifications of the digestive tract for holding air in loricariid and scoloplacid catfishes, Copeia, 1998, 663-675, 1998.

27. Bartels, H., The gills of hagfishes, in The Biology of Hagfishes, Jorgenson, J.M., Lomholt, J. P., Weber, R. W. and Malte, H., Eds., Chapman & Hall, London, 1998, Chapter 13.

28. Brainerd, E. L., The evolution of lung-gill bimodal breathing and the homology of vertebrate respiratory pumps. Amer. Zool., 34, 289-299, 1994.

29. Emery, S. H. and Szczepanski, A., Gill dimensions in pelagic elasmobranch fishes. Biol. Bull., 171, 441-449, 1986.

30. Farmer, C. G. and Jackson. D.C., Air-breathing during activity in the fishes Amia calva and Lepisosteus oculatus. J. Exp. Biol., 201, 943-948, 1998.

31. Farrell, A. P. and Olson, K. R., Cardiovascular structure and function, in The Physiology of Fishes, 3rd Edition, Evans D. H. and Claiborne, J. B., Eds., CRC Press, Boca Raton, 2005, Chapter 4.

32. Fry, F. E. J., The aquatic respiration of fish, in The Physiology of Fishes, Volume I, Brown, M. E., Ed., Academic, New York, 1957, Chapter 1, Part 1.

33. Hughes, G. M., Morphometrics of fish gills. Resp. Physiol., 14, 1-26, 1972.

34. Laurent, P., Gill internal morphology, in Fish Physiology, Volume XA, Hoar, W. S. and Randall, D. J., Eds., Academic Press, Orlando, 1984, Chapter 2.

35. Liem, K. F., Form and function of lungs: the evolution of air breathing mechanisms. Amer. Zool., 28, 739-759, 1988.

36. Stevens, E. D., Oxygen molecules as units to dimension the sieve of fish gills. Exp. Biol. Fish., 33, 317-318, 1992.

37. Altimiras, J., Larsen, E., Non-invasive recording of heart rate and ventilation rate in rainbow trout during rest and swimming. Fish go wireless! J. Fish Biol. 57, 197-209, 2000.

38. Farrell, A. P., A review of cardiac performance in the teleost heart: intrinsic and humoral regulation, Can. J. Zool. 62, 523-536, 1984.

39. Farrell, A. P., Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes. Comp. Biochem. Physiol. [A] Mol. Integr. Physiol. 132, 797-810, 2002.

40. Gamperl, A. K., Farrell, A. P., Cardiac plasticity in fishes: environmental influences and intraspecific differences. J. Exp. Biol. 207, 2539-2550, 2004.

41. Kalinin, A., Gesser, H., Oxygen consumption and force development in turtle and trout cardiac muscle during acidosis and high extracellular potassium. J. Comp. Physiol. 172, 145-151, 2002.

42. Munoz-Chapuli, R., Circulatory system: anatomy of the peripheral circulatory system, in W. C. Hamlett, Ed., Sharks, Skates, and Rays: The Biology of Elasmobranch Fishes, 1st Edition Baltimore, The Johns Hopkins University Press, 1999.

43. Santer, R. M., Morphology and innervation of the fish heart. Adv. Anat. Embryol. Cell Biol 89, 1-102, 1985.

44. Satchell, G. H., Physiology and Form of Fish Circulation. New York, Cambridge University Press, pp. 1-235, 1991.

45. Sanchez-Quintana, D., Garcia-Martinez, V., Hurle, J.M., Myocardial fiber and connective tissue architecture in the fish heart ventricle. J. Exp. Biol. 275,112-124, 1996.

46. Tota, B., Gattuso, A., Heart ventricle pumps in teleosts and clasmobranchs. A morphodynamic approach. J. Exp. Zool. 275, 162-171, 1996.

47. Airaksinen, S. and Nikinmaa, M. Effect of haemoglobin concentration on the oxygen affinity of intact lamprey erythrocytes. J. Exp. Biol., 198, 2393-2396, 1995.

48. Baroin, A., Garcia-Romeu, F., Lamarre, T., and Motais, R. A transient sodium-hydrogen exchange system induced by catecholamines in erythricytes of rainbow trout, Salmo gairdneri, J. Physiol. (London), 356, 21-31, 1984.

49. Brauner, C. J. and Randall, D. J. The interaction between oxygen and carbon dioxide movements in fishes, Comp. Biochem. Physiol. A, 113, 83-90, 1996.

50. Bumm, H. F., Ransil, B. J., and Chao, A. The interaction between erythrocyte organic phosphates, magnesium ion and hemoglobin, J. Biol. Chem., 246, 5273-5279, 1971.

51. Desforges, P. R., Gilmour, K. M., and Perry, S. F. The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity, J. Comp. Physiol. B Biochem. Syst. Environ. Physiol., 171, 465-473, 2001.

52. Jensen, F. B. and Brahm, J. Kinetics of chloride transport across fish red blood cell membranes, J. Exp. Biol., 198, 2237-2244, 1995.

53. Koldkjaer, P., Taylor, E. W., Glass, M. L., Wang, T., Brahm, J., Mckenize, D. J., and Jensen, F. B. Adrenergic receptors, Na+/H+ exchange and volume regulation in lungfish erythrocytes, J. Comp. Physiol. B Biochem. Syst. Environ. Physiol., 172, 87-93, 2002.

54. Weber, R. E. Functional interaction between fish hemoglobin, erythrocyte nucleoside triphosphates and magnesium, Acta Physiol. Scand., 102, 20A-21A, 1978.

55. Ando, M. and Nagashima, K.: Intestinal Na+ and Cl- levels control drinking behavior in the seawater-adapted eel Anguilla japonica, . Exp. Biol., 142, 155-175, 1989.

56. Avella, M., Part, P., and Ehrenfeld, J.: Regulation, of Cl- secretion in seawater fish (Dicentrarchus labrax) gill respiratory cells in primary culture, J. Physiol. Lond., 15, 353-363, 1999.

57. Beyenbach, K. W. and Kirschner, L. B.: Kidney and urinary bladder functions of the rainbow trout in Mg and Na excretion, Amer. J. Physiol., 229, 389-393, 1975.

58. Claiborne, J. B., Edwards, S., and Morrison-Shetler, A. I.: Acid-base regulation in fishes: Cellular and molecular mechanisms, J. Exp. Zool., 293, 302-319, 2002.

59. Fossat, B. and Lahlou, B.: The mechanism of coupled transport of sodium and chloride in isolated urinary bladder of the trout, J. Physiol. Lond., 294,211-222, 1979.

60. Laurent, P.: Gill Internal Morphology, In: Fish Physiology, W. S. Hoar and D. J. Randall (Eds.).

61. Marshall, W. S. and Nishioka, R. S.: Relation of mitochondria rich chloride cells to anion transport by marine teleost skin, J. Exp. Zool., 214, 147-156, 1980.

61. Nishimura, M., Imai, M.: Control of renal function in freshwater and marine teleosts, Fed. Proc., 41, 2355-2360, 1982.

62. Perry, S. F., Shahsavarani, A., Georgalis, T., Bayaa, M., Furimsky, M., and Thomas, S. L.: Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation, J. Exp. Zool., 300, 53-62, 2003

63. Perry, S. F.: The chloride cell: structure and function in the gills of freshwater fishes, Ann. Rev. Physiol., 59, 325-347, 1997.

64. Burton, R. F. Ionic regulation in fish: The influence of acclimation temperature on plasma composition and apparent set points. Comp Biochem Physiol 85A, 23-28, 1986.

65. Clarke, A. Life in cold water: the physiological ecology of polar marine ectotherms. In: Oceanography and Marine Biology Barnes, M. (Ed.) 341-453, Aberdeen University Press, Aberdeen, 1983.

66. Gonzalez, R. J. & McDonald, D. J. The relationship between oxygen uptake and ion loss in fish from diverse habitats. J Exp Biol 190, 95-108, 1994.

67. Guderley, H. Metabolic responses to low temperature in fish muscle. Biol Rev Camb Philos Soc 79, 409-427, 2004.

68. Nilsson, S. Control of gill blood flow. In: Fish Physiology: Recent Advances Nilsson, S. & Holmgren, S. (Eds.), 86-101, Croom Helm, London, 1986.

69. Acher, R., Molecular evolution of fish neurohypophysial hormones: neural and selective evolutionary mechanisms. Gen. Comp. Endocrinol. 102, 157-172, 1996.

70. Acher, R., Chauvet, J., Chauvet, M.-T., and Rouille, Y., Unique evolution of neurohypophysial hormones in cartilaginous fishes: possible implications for urea-based osmoregulation. J. Exp. Zool. 284, 475-484, 1999.

71. Dickhoff, W.W., Beckman, R.R., Larsen, D.A., Duan, C., and Moriyama, S., The role of growth in endocrine regulation of salmon smoltification. Fish. Physiol. Biochem. 17, 231-236, 1997.

72. Ichikawa, T., Pearson, D., Yamada, C., and Kobayashi, H., The caudal neurosecretory system of fishes. Zool. Sci. 3, 585-598, 1986.

73. Lin, H., and Randall, D., Proton pump in fish gills, in Cellular and Molecular Approaches to Fish Ionic Regulation, Wood, C.M., and Shuttleworth, T.J., (Eds.), Academic Press, San Diego, 1995, 229-255.

74. Lin, X., Volkoff, H., Narnaware, Y., Bernier, N.J., Peyon, P., and Peter, R.E., Brain regulation of feeding behavior and food intake in fish. Comp. Biochem. Physiol. A 126, 415-434, 2000.

75. Moon, T.W., Hormones and fish hepatocyte metabolism: “the good, the bad and the ugly!” Comp. Biochem. Physiol. B 139, 335-345, 2004.

76. Nagahama, Y., Endocrine regulation of gametogenesis in fish. Int. J. Dev. Biol. 38, 217-229, 1994.

75. Ackerman, P. A. et al., Stress hormones and the cellular stress resoponses in salmonids. Fish Physiol. Biochem., 23, 327, 2000

77. Adams, S. M., Status and use of biological indicators for evaluating the effects of stress on fish, Amer. Fish. Soc. Symp., 8. 1, 1990.

78. Barton, B. A., Stress in finfish: past, present, and future –a historical perspective. In Fish Stress and Health in Aquaculture, Iwama, G .K., Pickering A. D., Sumpter, J. P., and Schreck, C. B., (Eds.)., Cambridge University Press, Cambridge, 1997. 1.

79. Barton, B. A., Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteriods, Integ. Comp Biol., 42, 517, 2002.

80. Wagner, E., Arndt, R., and Hilton, B., Physiological stress responses, egg survival and sperm motility for rainbow trout broodstock anesthetized with clove oil, tricaqine methanesulfonate or carbon dioxide, Aquaculture, 211, 353, 2002.

81. D’Cotta, H. et al., Aromatase plays a key role during normal and temperature-induced sex differentitation of tilapia Oreochromis niloticus, Mol. Reprod. Dev., 59, 265-276, 2001.

82. Devlin, R. H. and Nagahama, Y., Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences, Aquaculture, 208, 191-364, 2002.

83. Drori, S. et al., spawning induction in common carp (Cyprinus Carpio) using pituitary extract or GnRG superacive analog combined with metoclopramid-analysis of hormone profile, progress of oocyte maturation and dependence on temperature, Aquaculture, 119, 393-407.1994.

84. Goetz, F. W. et al., The mechanism and hormonal regulation of ovulation: the role of prostaglandins in teleost ovulation. In Procedings of the 3rd International Symposium on the Reproductive Physiology of Fish, Idler, D. R. Crim. L. W., and Walsh, J. M., (Eds.), Memorial University of Newfoundland, St. John’s1987, 235-238.

85. Matsubara, T. et al., Multiple vitellogenins and their unique roles in marine teleosts, Fish Physiol. Biochem., 28, 295-299, 2003.

86. Nagahama, Y. The functional morphology of teleost gonads. In Fish Physiology, Hoar, W. S., Randall, D. J., and Donaldson E. M., (Eds.), Volume 9A, Academic Press, New York, 1983, 223-275.

87. Rothbard, S., Moav, B., and Yaron, Z., Changes in steroid concentrations during sexual ontogeny in tilapia, Aquaculture, 61, 59-74, 1987.

88. Strussmann, C. A. and Nakamura, M., Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes, Fish Physiol. Biochem., 26, 13-29, 2002.

89. Yamamoto, E., Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schelegel), Aquaculture, 173, 235-246, 1999.

90. Yu, K. L. and Peter, R. E., Changes in brain levels of gonadotropin-releasing-hormone and serum levels of gonadotropin and growth-hormone in goldfish during spawing, Can. J. Zool., 69, 182-188.

91. Yu, K. L., Rosenblum, P. M., and Peter, R. E., In vitro release of gonadotropin-releasing-hormone from the brain preoptic anterior hypothalamic region and pituitary of female goldfish, Gen. Comp. Endocrinol., 81, 256-267, 1991.

92. Bass, A. H., Bodnar, D.A., and Marchaterre, M. A., Midbrain acoustic circuitry in a vocalizing fish, J. Comp. Neurol., 419, 505-531, 2000.

93. Chapman, C.J. and Sand, O., A field study of hearing in two species of flatfish, Pleuronectes platessa (L.) and Limanda limanda (L.), Comp. Biochem. Physiol., 47A, 371-385, 1974.

94. Crawford, J. D., Jacob, P., and Benech, V., Sound production and reproductive ecology of strongly acoustic fish in Africa, Pollimyrus isidori, Mormyridae, Anim, Behav., 134, 677-725, 1997.

95. Fletcher, L. B. and Crawford, J. D., Acoustic detection by sound-producing fishes (Mormyridae): the role of gas-filled tympanic bladders, J. Exp. Biol., 204, 175-183, 2001.

96. Furukawa, T. and Ishii, Y., Neurophysiological studies on hearing in goldfish, J. Neurophysiol., 30, 1377-1403, 1967.

97. Kenyon, T. N., Ladich, F., and Yan, H. Y., A comparative study of hearing in fishes, the auditory brainstem response approach, J. Comp. Physiol. A, 182, 307-318, 1998.

98. Kotrschal, K., Van Staaden, M. J., and Huber, R., Fish brains: evolution and environmental relationships, Rev. Fish Biol. Fish., 8, 373-408, 1998.

99. Lugli, M. and Fine, M. L., Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams, J. Acoust. Soc. Am., 114, 512-521, 2003.

100. Lugli, M., Pavan, G., and Torricelli, P., The importance of breeding vocalizations for mate attraction in a freshwater goby with a composite sound repertoire. Ethol. Ecol. Evol., 8, 343-351, 1996.

101. Platt, C. and Popper, A. N., Fine structure and function of the ear. In Hearing and Sound Communication in Fishes, Tavolga, W. N., Popper, A. N., amd Fay, R. R., (Eds.), Springer-Veerlag, New York, 3-38, 1981.

102. Platt, C., Jorgensen, J. M., and Popper, A. N., The inner ear of the lungfish Protopterus, J. Comp. Neurol., 471, 277-288, 2004.

103. Popper, A. N. and Fay, R. R. The auditory periphery in fishes. In Comparative Hearing: Fish and Amphibians, Fay, R. R. and Popper, A. N., (Eds.), Springer-Verlag, New York, 43-100, 1999.

104. Yan, H. Y., and Popper, A. N., Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier), J. Comp. Physiol. A, 171, 105-109, 1992.

105. Aguilera, P. A. and Caputi, A. A., Electroreception in G. carapo: detection of changes in waveform of the electrosensory signals, J Exp. Biol. 206 (6), 989-998, 2003.

106. Amagai, S., Friedman, M. A., and Hopkins, C. D., Time coding in the midbrain of mormyrid electric fish. I. Physiology and anatomy of cells in the nucleus exterolateralis pars anterior, J. Comp. Physiol. A 182 (2), 115-130, 1998.

107. Andres, K. H., During, M. V., and Petrasch, E., The fine structure of ampullary and tuberous electro-receptors in the South American blind catfish, Pseudocetopsis spec., Anat. Embryo. 177, 523-535, 1988.

108. Barriviera, M. L., Louro, S. R. W., Wajnberg, E., and Hasson-Voloch, A., Denervation alters protein-lipid interactions in membrane fractions from electrocytes of Electrophorus electricus (L.), Biophys. Chem. 91 (1), 93-104, 2001.

109. Bennett, M. V. L., Electric organs. In Fish Physiology, Hoar, W. S. amd Randal, D. J. (Eds.), Academic Press, New York, 1971, 346-491.

110. Bennett, M. V. L. and Grundfest, H., The electrophysiology of electric organs of marine electric fishes: II. The electroplaques of main and accessory organs of Narcine brasiliensis, j. Gen. Physiol. 44, 1961.

111. Bennett, M. V. L. and Clusin, W. T., Transduction at electroreceptors: origin of sensitivity . In Membrane Transduction Mechanisms, Cone, R. A. and Dowling, J. E. (Eds.), Raven Press, New York, 1979, 91-116.

112. Caputi, A. and Budelli, R., The electric image in weakly electric fish.1. A data-based model of wave-form generation in Gymnotus carapo, J. Comput.l Neurosci. 2 (2), 131-147, 1995.

113. Collin, S. P. and Whitehead, D., The functional roles of passive electroreception in non-electric fishes, Anim. Biol. 54 (1), 1-25, 2004.

114. Finger, T., Electroreception in catfish: behavior, anatomy, and physiology. In Electroreception, Bullock, T. and Heiligenberg, W. (Eds.), Wiley, New York, 1986, 287-318.

115. Kramer, B., Electrocommunication in Teleost Fishes: Behavior and Experiments, Springer Verlag, Berlin, 1990.

116. Kramer, B., Electroreception and communication in Fishes, Georg Fischer Verlag, Stuttgart, 1995.

117. Northcutt, R. G., Electroreception in non-teleost bony fishes. In Electroreception, Bullock, T. and Heiligenberg, W. (Eds.), Wiley-Interscience, New York, 1986, 257-286.

118. Obara, S. and Sugawara, Y., Electroreceptor mechanisms in teleost and non-teleost fishes. In Comparative Physiology of Sensory Systems, Bolis, L., Keynes, R. D., and Maddrell, S. H. V. (Eds.), Cambridge University Press, Cambridge, 1984, 509-523.

119. Westby, G. W. M., The ecology, discharge diversity and predatory behavior of gymnotiform electric fish in the coastal streams of French Guyana, Behav. Ecol. Sociobiol, 22, 341s-354s, 1988.

120. Abogadie, F. C., Bruch, R. C., Wurzburger, R., Margolis, F. L. and Farbman, A. I., Molecular cloning of a phosphoinositide-specific phospholipase C from catfish olfactory rosettes, Mol Brain Res, 31, 10-16, 1995.

121. Cagan, R. H., Biochemical studies of taste sensation, VII. Enhancement of taste stimulus binding to a catfish taste receptor preparation by prior exposure to the stimulus, J Neurobiol, 10, 207-220, 1979.

122. Cagan, R. H., Biochemical studies of taste sensation. XII. Specificity of binding of taste ligands to a sedimentable fraction from catfish taste tissue, Comp Biochem Physiol A, 85, 355-358. 1986.

123. Doving, K., Functional properties of the fish olfactory system. In Progress in Sensory Physiology 6, Ottoson, D. (Ed.), Springer-Verlag, Berlin, 1986, 39-104.

124. Eisthen, H. L., The goldfish knows: olfactory receptor cell morphology prediets receptor gene expression, J Comp Neurol, 477, 341-346, 2004.

125. Goldstein, N. I. and Cagan, R.H., Biochemical studies of taste sensation: monoclonal antibody against L-alanine binding activity of catfish taste epithelium, Proc Natl Acad Sci USA, 79, 7595-7597, 1982.

126. Hara, T. J., Chemoreception in Fishes, New York, Elsevier, 1982.

127. Kitoh, J., Kiyohara, S. and Yamashita, S., Fine structure of taste buds in the minnow, Nippon Suisan Gakkaishi, 53, 1943-1950, 1987.

128. Sorensen, P. W., Hormones, pheromones, and chemoreception. In Fish Chemoreception, Hara, T. J. (Ed.), Chapman & Hall, London, 1992, 199-228.

129. Sorensen, P. W., Hara, T. J., Stacey, N. E. and Dulka, J. G., Extreme olfactory specificity of male goldfish to the preovulatory steroidal pheromone 17 a , 20 b -dihydroxy-4-pregnen-3-one, J Comp Physiol [A], 166, 373-383, 1990.

130. Yaksi, E., Higashijima, S., Mandel, G., Fetcho, J. and Friedrich, R., Chemotopy in the zebrafish olfactory system studied with a transgenic calcium indicator, Soc Neurosci, 34, 531.13, 2004.

131. Yamamoto, M., Comparative morphology of the peripheral olfactory organ of teleosts. In Fish Chemoreception, Hara, T. J. (Ed.), Chapman & Hall, London, 1992, 39-58.

132. Zelson, P. R. and Cagan, R. H., Biochemical studies of taste sensation. VIII. Partial characterization of alanine –binding taste receptor sites of catfish Ictalurus punctatus using mercurials, sulfhydryl reagents, trypsin and phospholipase C, Comp Biochem Physiol B, 64B, 141-147, 1979.

133. Nigelli, R. F., The fish in biological research, Trans. N.Y. Acad. Sci., 15, 183, 1953.

134. Hawkins, W. E., Walker, W. W., and Overstreet, R. M., Carcinogenicity tests using aquarium fish. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, Ran, G. M., (Ed.), Taylor and Francis, Washington, D.C., 1995.

135. Winn, R. N., Transgenic fish as models in environmental toxicology, ILAR J., 42, 322, 2001.

136. Ackerman, G. E., Brombacher, E. and Fent, K., Development of a fish reporter gene system for the assessment of estrogenic compounds and sewage treatment plant effluents, Environ Toxicol Chem 21, 1864-1875, 2002.

137. Bols, N. C. et al., Development and characterization of a cell line from a blastula stage rainbow trout embryo, (abstract). In Vitro Cell Dev Biol 40, 80A, 2004.

138. Bols, N. C. et al., The use of fish cell cultures as an indication of contaminant toxicity to fish, Aquat Toxicol 6, 147-155, 1985.

139. Brenner, S., Elgar, G., Sandford, R., Macrae, A., Venkatesh, B., and Aparicio, S., Characterization of the pufferfish (Fugu) genome as a compact model veertebrate genome. Nature, 366, 265-268. 1993.

140. Carvan, M. J. et al., Activation of transcription factors in zebrafish cell cultures by environmental pollutants, Arch Biochem Biophys 376, 320-327, 2000.

141. Clem, L. W., Moewus, L., and Sigel, M. M., Studies with cells from marine fish in tissue culture, Proc Soc Exp Biol Med 108, 762-766, 1961.

142. Ghosh, C., Zhou, Y. L., and Collodi, P., Derivation and characterization of a zebrafish liver cell line, Cell Biol Toxicol 10 (3), 167-176, 1994.

143. Hightower, L. E. and Renfro, J. L., Recent applications of fish cell culture to biomedical research, J Exp Zool 248, 290-302, 1988.

144. Scholz, S., Braunbeck, T., and Segner, H., Viability and differential function of rainbow trout liver cells in primary culture: coculture with two permanent fish cells, In Vitro Cell Biol Anim 34, 762-771, 1998.

Last modified: Tuesday, 24 January 2012, 10:40 AM